Virtual Floppy Drive (VFD): Disquetera virtual para Windows


Hace tiempo comente en una entrada del Blog que Sony iba a dejar de producir disqueteras de 3,5″ y disquetes de 3,5″ de 1,44 MB, de hecho actualmente disponer de una disquetera física en un equipo de sobremesa es casi imposible (Actualmente ningún equipo portátil la trae integrada; además en la mayoría de las tiendas especializadas en informática ni siquiera aparece en su catálogo, de hecho en las pocas tiendas online donde se pueden encontrar, suelen tener precios relativamente altos para sus prestaciones, rondando los 15 € para los modelos internos y los 35 € para los modelos externos USB, en ambos casos los gastos de envío van aparte).

Virtual Floppy Drive (VFD) es un proyecto GNU/GPL, esta utilidad para Windows nos permite montar hasta 2 unidades virtuales de 3,5″ en las que podemos grabar, borrar y editar datos como si fuese un disquete de verdad, una de sus ventajas es que permite trabajar con imágenes de disquete (Admitiendo los tipos de archivo: *.bin, *.dat, *.fdd, *.ima, *.img y *.vfd) tanto para su grabación como para el montaje de las mismas e incluso para pasar esa imagen a un CD si es un disquete de arranque, ya que una vez generada la imagen si esta es compatible con un programa de grabación de CDs/DVDs no debería de haber problemas para cambiar el formato físico del soporte ya que el software sigue siendo el mismo.

VFD se puede utilizar en entorno de texto (Modo consola) o entorno gráfico (Aplicación para Windows); permite crear disquetes de diversas capacidad, desde unidades de unos 160 KB (Usadas en discos de 5,25″ actualmente obsoletos) como unidades de hasta 2,88 MB (Tuvieron poco éxito en el mercado ya que por esas fechas aparecieron otras unidades de almacenamiento de mayor capacidad como las unidades Zip de Iomega de 100 MB o las Panasonic LS-120 de 120 MB).

La versión actual (v2.1) es compatible con Windows NT, 2000, XP, Vista y Windows 2003 Server y sólo es válida para sistemas de 32 Bits (Según parece hay en proyecto una versión de 64 Bits).

De todas formas esta utilidad no nos sirve para instalar drivers en sistemas «antiguos» como Windows XP en el que hay dos opciones:

  • La primera es utilizar un disquete físico para instalar los drivers  de la controladora (Pulsando la tecla F6 durante los primeros pasos de instalación)  si esta no era reconocida por Windows XP, aunque esto solamente pasa si tenemos:
    • Una controladora SATA de placa base en modo AHCI y/o RAID (En Modo IDE debería ser detectada sin problemas).
    • Una controladora SATA/SCSI/SAS conectada por puerto PCI/PCI-X (PCI eXtended)/PCIe (PCI express) que no sea reconocida por el Sistema Operativo al no disponer del driver correspondiente.
  • La segunda opción y también única si no disponemos de una disquetera, es integrar el driver de nuestra controladora dentro de CD de instalación de Windows usando para ello el programa:
    • nLite (Soporta: Windows 200, XP x86(32 Bits)  y x64 (64 Bits); y Windows 2003 x86 y x64).
    • vLite (Windows Vista).

Aunque ambos programas tienen muchas más funciones (Estos programas fueron comentados en esta entrada del Blog).

Se puede encontrar más información de VFD (Virtual Floppy Disk) en:

Conexiones de datos de alta velocidad para dispositivos de almacenamiento interno


Actualmente el conector de datos más común en ordenadores domésticos es:

  • Serial ATA (SATA150) que soporta hasta 150 MB/Seg por conector, en principio este ancho de banda es más que suficiente para cualquier disco duro (HDD: Hard Disk Drive) mecánico actual, aunque se queda corto para los SSD (Solid State Device, Dispositivo de Estado Sólido) basados en memoria flash (En estas entradas del Blog: SSD (Solid State Drive, Dispositivo de Estado Sólido): Los nuevos discos duros y Guía para comprar un SSD (Solid State Device, Dispositivo de Estado Sólido) hay más información sobre estos dispositivos).
  • Serial ATA2 (SATA300) que soporta hasta 300 MB/Seg por conector, en principio este ancho de banda es suficiente para casi cualquier SSD (Solid State Device, Dispositivo de Estado Sólido) actual a excepción de los Crucial C300 que son SATA3 (SATA600) ya que su capacidad de lectura es de 355 MB/Seg (Usando SATA300 se «quedan» en 265 MB/Seg).

Para solucionar el problema de ancho de banda sobre todo para los futuros SSD de altas prestaciones (Sin tener que recurrir al bus PCI Express (PCIe) como hacen por ejemplo los Revo Drive de OCZ, en esta entrada del Blog hay más información sobre este dispositivo) se puede utilizar:

  • Serial ATA 3 (SATA600) soporta hasta 6 Gbps (Unos 600 MB/Seg) por conector, actualmente es una buena opción ya que ningún SSD con conexión SATA supera los 400 MB/Seg.
  • SAS (Serial Attached SCSI) es una conexión que ha sustituido al antiguo SCSI (Small Computer System Interface), se utiliza en Servidores profesionales debido al alto coste tanto de las controladoras como de los dispositivos de almacenamiento, de hecho su evolución es similar a SATA (Los discos SAS son incompatibles con conexiones Serial ATA), la norma actual es SAS 6 Gbps (SAS 600) que soporta hasta 600 MB/Seg y se espera que para 2010 llegue hasta los 12 Gbps denominandose SAS 1200 que tendria aproximadamente 1,2 GB/Seg de ancho de banda.

Sin embargo ya hay proyectos para aumentar aun más la tasa de transferencia de los dispositivos internos como es el caso del conector:

  • High Speed Data Link (HDSL) de OCZ que utiliza un cable SAS de alta calidad, actualmente tiene un ancho de banda de 2 Gbps pero se espera que llegue en un futuro hasta 20 Gbps (Probablemente en un futuro tenga mejoras de velocidad como ocurre con la mayoría de conexiones de datos), HDSL se utiliza en los nuevos OCZ Ibis que tienen 4 controladoras Sand Force 1200 (SF-1200) en RAID 0 llegando a ofrecer unas prestaciones de hasta 804 MB/Seg en lectura y 675 MB/Seg en escritura (Información de Infochaos Digital).
  • Light Peak desarrollado por Intel que utiliza un cable de fibra óptica e inicialmente tendra un ancho de banda de 10 Gbps,  que en un futuro proximo podria llegar hasta los 100 Gbps, en principio se espera que aprezca en 2011.

Estos conectores permiten «apilar» los discos en niveles RAID (En esta entrada del Blog hay más información) siempre y cuando la controladora lo soporte, mientras que el uso de SSD con conexión PCIe no permite la «apilación» porque los discos trabajarian de forma individual.

Se puede encontrar más información en:

¿Cuál es el cuello de botella actual de un equipo informático?


El Bottleneck o Cuello de botella (Definición de Alegsa.com.ar) supone una limitación del rendimiento del equipo informático (PC) para realizar una función determinada (Por lo tanto el cuello de botella de un ordenador siempre a va ser su pieza más lenta). El cuello de botella puede ser debido a:

  • Un componente «lento» de por si (Ej: Un disco duro) que ralentiza al resto del sistema a pesar de ser actual (Los componentes electrónicos (CPU, Gráfica, Chipset,…) actualmente no suponen un cuello de botella).
  • Un desaprovechamiento de un componente «nuevo» porque el componente «base» en el que se instala es «lento» (Esto puede ocurrir por ejemplo al actualizar un equipo antiguo con piezas nuevas que sean compatibles), como por ejemplo utilizar:
    • Una tarjeta gráfica AGP 8x en un puerto 4x.
    • Una tarjeta PCIe 16x en una ranura limitada a PCIe 4x porque no existe ninguna ranura PCIe de  16x.
    • Un disco duro ATA133 en un equipo con conectores SATA300 (Normalmente disponen al menos de un conector ATA133 para conectar dispositivos antiguos y/o unidades ópticas).
    • Una memoria RAM DDR400 en una placa que admita DDR2 667 (Teniendo en cuenta que las placas base que soportan dos tipos diferentes de memoria no la admiten de forma simultánea o mezclada, es decir que sólo se puede usar un tipo de memoria u otro).
    • Una memoria RAM DDR2 1066 en una placa base que admita hasta DDR2 667 o bien el controlador de memoria del procesador (Caso de los Athlon64) este limitado a DDR2 667.

Lógicamente la sensación de lentitud (Dentro de un orden claro está) es diferente para cada usuario y por lo tanto el cuello de botella puede estar en piezas diferentes en función de la tarea a desarrollar por ejemplo para:

  • Editar video si no queremos que el proceso se «eternice» suele ser necesario tener:
    • Un buen procesador (Basicamente es el que se encarga de procesar el video).
    • Una buena cantidad de RAM.
  • Jugar de forma fluida a los últimos juegos 3D con gran resolución (Ej: Full HD ó 1080p: 1.920 x 1.080 píxeles) y buen nivel de detalle (Aplicación de filtros) será necesario tener:
    • Una buena tarjeta gráfica que sea capaz de procesar los recursos gráficos que genera el juego en cuestión.
    • Un procesador «bueno».
    • Bastante RAM.

Hay que tener en cuenta que el cuello de botella sólo se vería reflejado en usos muy concretos (Como por ejemplo los comentados anteriormente), ya que un equipo actual para ofimática con un par de años aunque se actualizase algún componente no tendría un cuello de botella significativo ya que las aplicaciones que utiliza no requieren un gran consumo de recursos, si acaso se podría cambiar el disco duro por otro más rápido pero dado que actualmente:

  • Los equipos domésticos en general usan discos de 7.200 Rpms (Los equipos profesionales pueden usar discos de 10.000 ó 15.000 Rpms, aunque actualmente tienden a utilizar SSD, comentados en estas entradas del Blog: Guía para comprar un SSD (Solid State Device, Dispositivo de Estado Sólido) y SSD (Solid State Drive, Dispositivo de Estado Sólido): Los nuevos discos duros).
  • Los discos de 10.000 Rpms SATA están «limitados» a los Velociraptors de Western Digital, pero tienen una relacion €/GB pémisa (Los modelos de 74 y 150 GB rondan los 150 €, el de 300 GB ronda los 203 €, el de 450 GB los 280 y el de 600 GB ronda los 285 €), ya que los precios en muchos casos se acercan a de un SSD  de entre 60 y 120 GB.
  • Los SSD tienen una relación €/GB también pésima (Aunque su rendimiento es muy superior a cualquier disco duro actual de 10.000 ó 15.000 Rpms), un SSD de 60 GB ronda los 160 € y uno de 120 GB ronda los 320 €, aunque también hay SSD de 40 GB y alto rendimiento (Ej: Mushkin Callisto, comentado en esta entrada del Blog) que rondan los 108 € sin gastos de envío.

Para un uso puramente ofimático posiblemente siga interesando tirar de discos duros mecánicos por su relacion precio/prestaciones frente a los SSD.

Sin embargo existe un cuello de botella «endémico» en cualquier equipo informático actual de altas prestaciones: El disco duro, desde el inicio de la informática los sistemas de almacenamiento electro-mecánicos (Discos duros) han sido siempre el cuello de botella, un disco duro:

  • UDMA33 (ATA33) podía transmitir hasta 33 MB/Seg aunque luego su rendimiento secuencial y aleatorio era inferior (Utilizaban cables de 40 hilos y 40 contactos).
  • UDMA66 (ATA6) podía transmitir hasta 66 MB/Seg aunque luego su rendimiento secuencial y aleatorio era inferior (A partir de ATA66 hasta ATA133 se utilizaron cables de 80 hilos y 40 contactos).
  • UDMA100 (ATA100) podía transmitir hasta 100 MB/Seg aunque luego su rendimiento secuencial y aleatorio era inferior.
  • UDMA133 (ATA33) podía transmitir hasta 133 MB/Seg (Que es justamente el máximo ancho de banda del bus PCI) aunque luego su rendimiento secuencial y aleatorio era inferior.
  • Serial ATA 150 (SATA150) podía transmitir hasta 150 MB/Seg (Que es justamente el máximo ancho de banda del bus PCI) aunque luego su rendimiento secuencial y aleatorio era inferior (Lo normal es que el bus SATA utilice una conexión PCI express o PCIe).
  • Serial ATA 300 (SATA300 ó SATA2) transmite hasta 300 MB/Seg (Que es justamente el máximo ancho de banda del bus PCI) aunque luego su rendimiento secuencial y aleatorio era inferior.
  • Serial ATA 600 (SATA600 ó SATA3) podía transmitir hasta 600 MB/Seg (Que es justamente el máximo ancho de banda del bus PCI) aunque luego su rendimiento secuencial y aleatorio era inferior.

Hay que tener en cuenta que en el caso de los discos UDMA/ATA el ancho de banda disponible se repartía entre los dos dispositivos (Master y Slave)  conectados al mismo canal (Primario o Secundario) y que el acceso a los mismos (Ej: Pasar datos de un disco duro Master en canal primario al disco Slave del mismo canal) no era simultáneo sino alterno. Con el nuevo conector Serial ATA (SATA) ha habido una mejora en este sentido ya que cada dispositivo tiene su ancho de banda propio (En el caso de SATA150, cada conector tiene hasta 150 MB/Seg de ancho de banda, en el caso de SATA300/SATA2 cada conector tiene hasta 300 MB/Seg y en el caso de SATA600/SATA3 cada conector tiene 600 MB/Seg) puesto que la conexion es «directa» desde el dispositivo (Ej: Disco Duro) al conector SATA de la placa base.

Actualmente para equipos de gama alta parece más interesante tener un SSD o dos en RAID 0 (Stripping) junto con un disco duro de alta capacidad para:

  • Instalar el Sistema Operativo y el Software (Programas y Juegos) en el SSD, acelerando así la carga del Sistema Operativo y la apertura de los programas/juegos).
  • Dejando el disco duro de gran capacidad para almacenar los datos de usuario (Documentos, Música, Videos/Películas, Descargas,…) los cuales no necesitan tener una apertura «instantánea».

El mayor problema es que si necesitamos un SSD de cierta capacidad 120 GB o más el precio del mismo se «dispara».

Ya que actualmente los ordenadores tienen un gran ancho de banda en los componentes puramente electrónicos como por ejemplo:

  • FSB de los procesadores, por ejemplo el bus Hyper-Transport (HTT) v3.0 de los ultimos AMD tiene una frecuencia de funcionamiento de 3,2 Ghz con 32 Bits, que se traduce en un ancho de banda bidireccional de 51,2 GB/Seg, y los primeros Intel Nehalem (Core i7 y derivados) tienen un bus similar al HTT de AMD denominado QPI (QuickPath Interconnect), el cual funciona a 3,2 Ghz con 20 Bits, que se traduce en un ancho de banda bidireccional de 25,6 GB/Seg.
  • Memoria RAM DDR2 PC1066 que tiene 8.500 MB/Seg (8,5 GB/Seg).
  • Memoria RAM DDR3 PC1600 que tiene 12.800 MB/Seg (12,8 GB/Seg).
  • Bus Serial ATA300 (Hasta 300 MB/Seg).
  • Bus Serial ATA600 (Hasta 600 MB/Seg).
  • USB 3.0 (Hasta 4,8 Gbps, unos 4.800 Mbps que equivalen a unos 600 MB/Seg).
  • Bus PCI Express (PCIe) que en su version 1.1 tiene un ancho de banda de 250 MB/Seg y por canal, es decir que un bus PCIe de 1x tendría 250 MB/Seg (El bus PCI anterior tenía como máximo 133 MB/Seg para todos los dispositivos que hubiese conectados a él), mientras que un PCIe 16x tendría 4 GB/Seg (4.000 MB/Seg) ya que serían 16 canales de 250 MB/Seg cada uno (250 MB/Seg x 16  canales = 4.000 MB/Seg). Actualmente el bus PCIe va por la versión 2.0 el cual dobla la tasa de transferencia, hastalos 500 MB/Seg y el próximo bus PCIe 3.0 la vuelve a doblar hasta los 1.000 MKB/Seg.

Sin embargo los discos duros mecánicos actuales (Lo habitual es que sean de 5.400 ó 7.200 Rpms) por muy rápidos que sean (Aun siendo de 10.000 ó 15.000 Rpms)  no pueden aprovechar al 100% el ancho de banda que proporcionan los buses de datos actuales como por ejemplo:

  • SATA o S-ATA (Serial ATA).
  • SCSI (Small Computers System Interface (Sistema de Interfaz para Pequeñas Computadoras).
  • SAS (Serial Attached SCSI que es utiliza unos conectores similares a SATA pero incompatibles con él).

Por lo que el rendimiento del sistema de almacenamiento supone un cuello de botella bastante grande, por varias razones:

  1. Alta latencia: Los discos duros de 7.200 Rpms (Los más comunes en entornos domésticos) tiene un tiempo de busqueda según fabricante en el mejor de los casos de unos 9 ms aproximadamente (Mientras que un disco de 10.000 Rpms segun datos de los fabricantes tienen el mejor de los casos 4,2 ms y los discos de 15.000 Rpms tienen entre 3,4 y 3,5 ms), esto se traduce en una pérdida de rendimiento debido a que para buscar un dato es necesario invertir bastante «tiempo» si se compara con un SSD los cuales tienen latencias (Tiempo de Acceso) inferiores a 1 ms.
  2. Tasa de transferencia: Que en el caso de los discos duro no se mantiene sostenida sino que fluctua entre un maximo y un minimo, de hecho las gráficas de los Benchmark de disco duro como: HD Tach y HD Tune, muestran que un disco duro SATA300 de 500 GB y 7.200 Rpms actual puede tener una tasa media de transferencia de datos de unos 100 MB/Seg pero esta tasa no es sostenida a lo largo de toda la superficie del plato sino que suele empezar por una tasa ligeramente superior a la media para ir bajando progresivamente hasta por debajo de la media pudiendo llegar a ser la tasa mínima aproxidamente entre el 50 (En torno a los 50 MB/Seg) ó el 60% (En torno a los 60 MB/Seg) de la velocidad media.
  3. IOPS (Input Output Per Second, Operaciones de Entrada – Salida Por Segundo): Los discos duros tienen muy bajo rendimiento en este sentido.

Estos problemas y otros derivados de la propia arquitectura de los discos duros inicialmente se «resolvieron» con los niveles RAID (Hay más información en esta entrada del Blog) que permitian mejorar:

  • El rendimiento del sistema de almacenamiento (Ej: RAID 0, Stripping)
  • La seguridad física de los datos, como es el caso de RAID 1 (Mirroring o Espejo).
  • El rendimiento y la seguridad física de los datos, como es el caso de RAID 5 y RAID 10.

Sin embargo aun utilizando sistemas RAID los discos duros tienen una latencia alta, por lo que los SSD (Solid State Device, Dispositivos de Estado Sólido) basados en memorias Nand Flash como las que se utilizan en las memorias flash USB o las tarjetas de memoria, son los que realmente proporcionaran al usuario un gran rendimiento ya que apenas tienen latencia (Es inferior a 1 ms) y sus tasas de transferencia de datos son muy altas (Si queremos mayor rendimiento aún se puede optar por un RAID 0 con dos o más SSD); sin embargo hasta que no sus precios sean «asequibles» (Actualmente un SSD «bueno» de entre 60 y 80 GB ronda los 160 – 225 €) no se podrá eliminar el lastre de rendimiento que suponen los discos duros para los sistemas operativos actuales y sus programas/juegos.

De hecho en el futuro no sería raro ver equipos de altas prestaciones con Un SSD para el Sistema (Incluyendo los Programas y Juegos) para que le de «rapidez» al equipo, mientras que los datos de usuario se guardan en:

  • Discos duro electro-mecánicos de gran capacidad (Actualmente existen discos de hasta 2 TB y ya que comenta que en breve saldrán los discos de 3 TB).
  • Discos duros híbridos (HHD: Hybrid Hard Drive, Discos Duro Híbrido que son discos electro-mecánicos pero con algo de memoria Flash para acelerar el rendimiento, en esta entrada del Blog hay más información)  de gran capacidad (Actualmente Seagate tiene un modelo con estas caracteristicas denominado Seagate Momentus XT, es un disco duro de 2,5″ (Tamaño de disco duro de portátil) que esta disponible en tres capacidades: 250 GB, 320 GB y 500 GB que cuenta con 4 GB de memoria Nand Flash SLC, pero teniendo en cuenta que el modelo de 320 GB ronda los 123 € y el modelo de 500 GB los 148 € parece mejor opción este último ya que por unos 30 € más se consiguen 180 GB «extras»).

Guía para comprar una Placa Base (Motherboard o Mainboard)


La placa base (Motherboard o Mainboard) es el soporte básico de un ordenador de ella depende varios factores como por ejemplo:

  • El procesador (CPU) que podemos utilizar en función del Socket que utilice, por ejemplo si la placa base es para Socket 775 de Intel, sólo podremos utilizar procesadores de ese Socket y ese fabricante.
  • El tipo de memoria RAM que soporta, por ejemplo una placa base que soporta DDR2 no soporta DDR3, aunque en el mercado existen algunas placas base con soporte de memoria «mixto» (Ej: DDR2 y DDR3) aunque no pueden utilizarse de forma simultanea, y además suelen tener menor capacidad de memoria RAM, es decir si una placa con soporte para DDR2 ó DDR3 tiene 4 zócalos, una placa base con soporte «mixto» aunque tiene 4 zocalos, seguramente tendrá 2 zócalos DDR2 y otros 2 zócalos DDR3.
  • El tipo de tarjeta gráfica que soporta, ya que hace tiempo había placas base con puerto AGP y otras con puerto PCI Express (PCIe), actualmente el estándar actual es PCI Express (PCIe)
  • El número de dispositivos de almacenamiento interno y su tipo (IDE, SATA, SCSI o SAS) que podemos conectar a la placa base, algunos modelos de gama alta incluyen controladoras adicionales que aumentan el número de dispositivos.
  • El sistema de refrigeración de los componentes (Northbridge, Southbridge, Zona VRM (Voltage Regulator Module, Módulo Regulador de Voltaje) y Chipset auxiliares), en los modelos de gama baja suele ser pasiva (Utilizan disipadores (Heatsink/Heat Sink) de aluminio o cobre), o bien utilizan un disipador activo (con ventilador) que a la larga supone una fuente de ruido ya que son ventiladores pequeños que giran a altas Rpms; mientras que en los modelos de media y alta llevan sistemas de refrigeración pasivos con heat pipes que mejoran la disipación de calor y no generan ruido, incluso algunos modelos de gama alta vienen preparados para adaptarles un kit de refrigeración líquida a los disipadores y mejorar aún más su rendimiento.
  • Extras que tiene la placa base, algunos modelos de gama media y alta incluyen por ejemplo:
    • Switch (Botones) para:
      • Encender/Apagar la placa blase (Esto también se puede hacer puenteando los pines adecuados).
      • Hacer un Reset (Esto también se puede hacer puenteando los pines adecuados).
      • Hacer un Clear CMOS (Esto también se puede hacer con el Jumper correspondiente de la placa base).
    • Número de fases de alimentación, a mayor número de fases mayor estabilidad del sistema, aunque actualmente existen modelos con alimentación con fases analógicas (Con menor precisión) y modelos con alimentación digital PWM (Con mayor precisión).
    • PCB , Capacitadores sólidos, Chokes, Mosfet de Ferrita,… de mayor calidad que los convencionales.
    • Display de 2 digitos Hexadecimal o Hex (Utiliza la Base 16 (Emplea los números del 0 al 9 y las letras A (10), B (11), C (12), D (13) E (14) y F (15) ), el sistema de numeración hexadecimal permite mostrar hasta el número 255  utilizando «sólo» 2 digitos, en hexadecimal 255 equivale al número FF), que muestra un error en caso de haberlo, en lugar de emitir los típicos «pitidos» de placa base, actualmente lo implementan algunas placas base DFI (Hace tiempo se podían ver en las placas base de Epox).
    • Led de diagnóstico de Hardware (Ej: CPU, Memoria, PCIe, PCI, SATA, IDE,…).
    • Led de consumo ACPI que informan del consumo apróximado del equipo, ej: verde, amarillo, naranaja y rojo.
    • Conector unificado del Front Panel (HDD Led, Reset Switch, Power Led, Power,…), actualmente  lo implementa Asus bajo el nombre «Asus Q-Connectors».
    • Conectores y Slot fluorescentes (UV Reactivos).
    • Conexión para hacer comprobaciones con un polímetro , actualmente se usa en algunas placas base de MSI con el chipset  P55 de los Core i5 utilizando un conector «V-Kit» (información de Noticias3D)
    • Sistemas de protección de BIOS como el Dual BIOS de Gigabyte que evita que la BIOS de la placa base resulte dañada al tener una 2ª BIOS de reserva.

Otro punto importante a tener en cuenta a la hora de comprar una placa base es su chipset, actualmente para:

  • Procesadores Intel, los chipset que dan mejor resultado por regla general son los Intel.
  • Procesadores AMD, los chipset que dan mejor resultado por regla general son los AMD/Ati, aunque hace unos años los Chipset de Nvidia (nForce) no daban malos resultados.
  • Otros fabricantes de chipset actuales son nVidia, Via o SiS, aunque actualmente estos dos últimos no fabrican chipset ni para Intel ni para AMD.

Gigabyte EP45-DS5

En la imagen (Arriba) se puede apreciar una placa base Gigabyte EP45-DS5 que reune varias de las características que comento como por ejemplo:

  • Capacitadores sólidos, Chokes y Mosfet de Ferrita de mayor calidad que los convencionales.
  • Leds de diagnostico en la placa base (CPU, Memory, PCIe 16x/8x, PCIe 4x/1x, PCI, SATA e IDE).
  • Botones en placa base: Power, Reset y Clear CMOS (Están situados en la parte inferior de la placa base).
  • Refrigeración por heat pipes de 4 piezas: Southbridge (Chipset Sur) comunicado con Northbridge (Chipset Norte) y Zona VRM (Voltage Regulator Module, Módulo Regulador de Voltaje) que se compone de dos piezas.
  • Alimentación de 2 fases para Chipset (Northbridge).
  • Alimentacion de 2 fases para Memoria RAM.

Entre los fabricantes más conocidos de placas bases están: Asus, Gigabyte, MSI, DFI (DFI-ACP y DFI LANParty), Foxconn, ASRock, Intel, Zotac, EVGA, , XFX o Sapphire entre otros ; actualmente han desparecido algunos fabricantes como Abit o Epox que no tienen placas base que utilicen chipset actuales como por ejemplo:

  • Intel P45 para Socket 775.
  • Intel P55 para Socket 1156 (Core i5).
  • Intel X58 para Socket 1366 (Core i7).
  • AMD/Ati para AM2+/AM3 (770, 780G, 790X, 790GX, 790FX)

Se puede encontrar más información sobre placas base en:

Fiabilidad de los discos duros actuales


DiscoDuroSATA

Los discos duros (HDD: Hard Disk Drive) actuales son bastante fiables (su tiempo estimado de vida es de entre unas 500.000 y 1.400.000 horas MTBF o MTTF, en esta entrada hay más información sobre la diferencia entre MTBF, MTTF y MTTR) sin embargo conviene recordar que no son «indestructibles» por lo que es aconsejable tomar una serie de medidas preventivas para evitar posibles pérdidas de datos y/o fallos físicos en los discos duros en condiciones ambientales normales de:

  • Temperatura.
  • Humedad.
  • Altitud.

Algunas de estas medidas son por ejemplo evitar:

  • En lo posible los apagados bruscos del ordenador, ya que si por ejemplo el disco duro esta realizando una operación de escritura de datos (ej: Actualizar un archivo), estos podrían dañarse al no finalizar de forma correcta, esto se puede solucionar en parte con el uso de un SAI (Sistema de Alimentación Ininterrumpida) o UPS (Uninterruptible Power Supply, Sistema de Alimentación Ininterrumpida), en esta entrada: Sistemas de protección para dispositivos eléctricos: Regletas y SAI (Sistemas de Alimentación Ininterrumpida) hay más información.
  • El sobrecalentamiento del disco duro, los discos duros tienen una temperatura operativa máxima que no es aconsejable sobrepasar (Los fabricantes de discos duros dan la información en las especificaciones técnicas de sus discos duros), no es obligatorio usar un refrigerador de disco duro pero si es conveniente que la caja del ordenador tenga un sistema de refrigeración al menos con un par de ventiladores de caja que ayude a la refrigeración de los componentes del ordenador (Chipset de placa base, Tarjeta gráfica, Disco duro,…).
  • Los movimientos bruscos, los discos duros son piezas electromecánicas (tienen una parte electrónica y otra mecánica) sensibles al movimiento ya que sus partes móviles pueden resultar dañadas, hay que tener en cuenta que actualmente los discos duros funcionan a:
    • 4.200 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 70 vueltas (4.200 Rpms / 60 Segundos = 70 Rev. por Seg). Suelen verse en discos de 2,5″ (IDE o SATA) para portátiles y discos de 1,8″.
    • 5.400 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 90 vueltas (5.400 Rpms / 60 Segundos = 90 Rev. por Seg). Suelen verse en discos de 2,5″ (IDE o SATA) para portátiles y discos de 3,5″ de sobremesa de bajo consumo (ej: Samsung SpinPoint F1 Eco Green).
    • 5.900 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 98 vueltas (5.900 Rpms / 60 Segundos = 98,333 Rev. por Seg). Actualmente el único modelo es el disco Seagate  LP que tiene varias capacidades disponibles de 1, 1,5 y 2 TB (Terabytes).
    • 7.200 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 120 vueltas (7.200 Rpms / 60 Segundos = 120 Rev. por Seg). Suelen verse en discos duros de 2,5″ de altas prestaciones, y es el estándar actual en discos de 3,5″ de sobremesa.
    • 10.000 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 166,667 vueltas (10.000 Rpms / 60 Segundos = 166,667 Rev. por Seg). Actualmente están limitados el sector de servidores de altas prestaciones con conexiones SCSI o SAS; aunque existe un disco duro SATA de 10.000 Rpms, los Western Digital Raptor (En fase de descatalogación) y los Velociraptor (Sustituyen a los antiguos Raptor).
    • 15.000 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 250 vueltas (15.0000 Rpms / 60 Segundos = 250 Rev. por Seg). Actualmente están limitados el sector de servidores de altas prestaciones con conexiones SCSI o SAS.
  • Los impactos, caidas o golpes ya que pueden dañar el disco duro (Los platos o sus partes móviles como son los cabezales de lectura/escritura).

Estos problemas de fiabilidad en parte se solucionan con los nuevos SSD (Solid State Drive, Dispositivos de Estado Sólido; también llamados Solid State Disk, Discos de Estado Sólido aunque no tienen platos pero si tienen la misma función (almacenan datos) que los discos duros actuales), comentados en esta entrada: SSD (Solid State Drive, Dispositivo de Estado Sólido): Los nuevos discos duros que tienen como ventajas principales:

  1. Mejores prestaciones (tasas de lectura/escritura de datos y tiempo de acceso).
  2. Menor consumo.
  3. Reducción del calor producido.
  4. Nivel de ruido nulo, no tienen piezas mecánicas que lo generen como los discos duros actuales.
  5. Mayor resistencia a golpes y vibraciones.

Aunque los SSD también tienen sus desventajas:

  1. Alto precio en relacion Precio/GB, las unidades de 32 Gb son las más “asequibles” y aún así son caras.
  2. Tecnología nueva que todavía no se sabe su tiempo de vida ya que las memorias flash tienen un numero determinado de ciclos de lectura y escritura.
  3. Escasa capacidad de almacenamiento si lo comparamos con discos tradicionales.
  4. Problemas de rendimiento con algunas controladoras (por ejemplo el caso de los OCZ Core Series v1).
  5. El tamaño actual es de 2,5″ (tamaño de disco portátil), el estandar en sobremesa es de 3,5″ por lo que hay que recurrir a adaptadores si queremos instalar un dispositivo de este tipo.

Guía para comprar un disco duro (HDD: Hard Disk Drive)


DiscoDuro

Actualmente el disco duro (HDD: Hard Disk Drive) es una de las piezas de mayor importancia en un ordenador ya que por norma general suele ser uno (Aunque se pueden tener varios discos duros sin problemas siempre y cuando la placa base o la controladora tenga las conexiones necesarias), es una una de las piezas clave de un ordenador por varias razones:

  1. Son el medio principal de almacenamiento de datos no volátiles (Los datos almacenados no se pierden al apagar el ordenador), almacenan:
    • El Sistema/s Operativo (S.O), aunque se pueden tener varios Sistemas Operativos (ej: Windows y Linux) en particiones diferentes instalados en un mismo disco duro.
    • Software (Programas, Utilidades y/o Juegos) que instalamos para poder usarlos en el Sistema Operativo.
    • Nuestros datos personales (Documentos, Archivos, Descargas,….), siendo aconsejable tenerlos en otra partición diferente de la del Sistema y Programas, en esta entrada se comentan
  2. Determinan el rendimiento del sistema de almacenamiento del equipo, no es lo mismo tener un disco de 5.400 Rpms IDE ATA66 de hace unos años, que un disco duro de 7.200 Rpms SATA300 con NCQ.
  3. Guardan nuestros datos de usuario por lo que un fallo grave en el disco duro podría suponer la pérdida de los mismo, por esta razón es más que aconsejable tener copias de seguridad de los datos (Back-Up) en otros soportes (ej: CDs/DVDs, Memorias Flash USB, Tarjetas de memoria, Discos duros,…).

Hay que tener en cuenta que es conveniente hacer al menos un par de particiones al disco duro (En esta entrada (¿Por qué es bueno hacer particiones a los discos duros?) se comenta más detalladamente el tema de las particiones):

  • Una para el Sistema Operativo y el Software (Programas, utilidades y juegos). Hay que tener en cuente que cada sistema operativo requiere una partición propia para él (salvo que se utilicen maquinas virtuales), es decir que si queremos usar una versión de Windows (ej: Windows XP o Vista) y una distribución Linux (ej: Ubuntu u Open Suse) necesitaremos al menos dos particiones una para cada sistema, además de las que requiera Linux para su uso como por ejemplo las particiones:
    • /Swap donde se ubica el archivo de intercambio o memoria virtual del S.O, es una zona del disco duro en la que se almacenan los datos que no pueden almacenarse en memoria RAM por falta de espacio en memoria RAM.
    • /Home donde se almacenan los datos de usuario, equivale a la carpeta Mis Documentos de Windows.
  • Otra para los datos (documentos, archivos de audio/video, descargas,…) del usuario.

Además de ser una de las piezas críticas de un equipo ya que si tiene algún problema este puede verse reflejado en el funcionamiento del ordenador como por ejemplo:

  • Perdida o corrupción de datos.
  • Bloqueos o cuelgues del sistema.
  • Imposibilidad de reinstalar el sistema operativo si el disco tiene una avería que implica su sustitución.

Para evitar pérdidas de datos importantes por un fallo crítico en el disco duro podemos usar algunas utilidades que hay para diagnosticar dichos fallos, en estas entradas se comentan algunas de ellas:

A la hora de elegir un modelo tenemos que tener en cuenta algunos factores como por ejemplo su:

  • Fiabilidad: Unas marcas suelen ir mejor que otras aunque es relativo la fiabilidad a veces depende más de los modelos en cuestión más que del fabricante; las principales marcas suelen ser Seagate (hace tiempo compro a Maxtor), Western Digital, Hitachi (antes de IBM) y Samsung para discos de 3,5″, en el mercado de 2,5″ hay algún que otro fabricante más (por ejemplo Toshiba o Fujitsu).
  • Garantía: Lo normal es que tengan 3 años (aunque las tiendas suelen dar 2 años que es lo que dice la ley) pero ciertos modelos destinados al mercado empresarial preparados para funcionar 24 / 7 (24 horas al día los 7 días de la semana) o de gama alta tienen hasta 5 años de garantía.
  • Tiempo de vida: Normalmente un disco duro domestico tiene unas 500.000 horas MTBF, mientras que los discos empresariales llegan o superan el 1.000.000 horas MTBF (Usan mecánicas de mayor calidad). Esto no significa que un disco no pueda estropearse a los 4 días de usarlo; ni tampoco significa que vaya a durar 50 años o más. En muchos casos algunos fabricantes estiman una vida útil de unos 5 años, a partir de esa fecha podría dar «problemas».
  • Prestaciones, están determinadas por los siguientes factores:
    • Revoluciones por minuto (Rpms): A mayor Rpms mayor rendimiento, los discos duros de 3,5″ (estándar de sobremesa) IDE/SATA actuales funcionan a 7.200 Rpms (Hasta hace poco los discos duros  funcionaban a 5.400 Rpms). Actualmente los discos IDE/SATA son de 7.200 Rpms (A excepcion del Western Digital Raptor/Velociraptor que actualmente son los únicos discos SATA de 10.000 Rpms), por otro lado los discos duros SCSI/SAS actuales son de 10.000 ó 15.000 Rpms.
    • Tiempo de acceso (Latencia): Es el tiempo que tarda el disco leer o escribir datos, a menor tiempo de acceso mayor rendimiento. Es un parametro relacionado con las Rpms (A más Rpms, menor tiempo de acceso). Hay varias latencias:
      • Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista) y la Latencia media (situarse en el sector).
      • Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
      • Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
    • Densidad de datos: A mayor densidad, mayor rendmiento (y menor número de platos), por ejemplo un disco de 1 TB tendrá peor rendimiento si tiene 4 platos de 250 GB cada uno en lugar de tener 3 platos de 320 GB cada uno, ya que este último almacena mayor cantidad de datos por plato, y puede transmitir mayor cantidad de datos.
    • Tasa de transferencia de datos (Lectura y Escritura): Depende de los parametros anteriores, a más Rpms mayor tasa de transferencia, y a mayor densidad de datos mayor tasa de transferencia. La tasa de transferencia puede ser:
      • Sostenida: Es la tasa de transferencia media, es decir que el disco duro puede transmitir «n» MB/seg ya que los discos duros no tienen una tasa de transferencia «fija» sino que esta oscila entre una tasa mínima y otra máxima, siendo la «media» la de referencia ya que de poco sirve tener varios picos muy altos si no se mantienen.
      • De pico: Son picos de transferencia máxima.
      • Ráfaga (Burst Rate): Es la tasa de transferencia entre la controladora del disco duro y el bus de datos de la placa base, por ejemplo en un disco SATA150 el Burst Rate se aproxima 150 MB/seg, en SATA300 se aproxima a 300 MB/seg, aunque casi nunca se llega al máximo del burts rate.
    • Memoria cache (Bufer): Es una memoria intermedia que tiene el disco duro para almacenar los datos, a mayor cantidad de bufer mejor rendimiento aunque no necesariamente, los discos actuales tienen entre 16 y 32 MB de bufer, aunque es posible que aún queden discos con 8 MB de bufer (de todas formas hay que tener en cuenta que hace tiempo los discos tenían 512 KB de bufer y poco después pasaron a tener 2 MB).
    • Grabacion perpendiacular (PMR): actualmente los discos de mayor capacidad usan esta tecnica que permite aumentar la capacidad de almacenamiento y por tanto su densidad por plato. En esta entrada () hay mas información sobre esta tecnología.
    • Native Command Queuing (NCQ): Es una tecnología que mejora el rendimiento del disco, optimizando las operaciones de lectura, como se puede ver en esta imagen de Wikipedia (en inglés):

NCQ

  • Tamaño: Los discos duros actuales tienen varios tamaños según su finalidad, los tamaños más habituales son:
    • 3,5″: Son los discos que se utilizan de forma estándar en los ordenadores de escritorio.
    • 2,5″: Son los discos que se utilizan de forma estándar en los ordenadores portátiles.
    • 1,8″: Son los discos que se utilizan de forma estándar en muchos reproductores portátiles.
  • Conexión de datos: En principio es indiferente (En esta entrada: Velocidad de transferencia de datos de dispositivos de un PC (2ª parte) se puede encontrar información más detallada) aunque se pueden diferenciar dos sectores:
    • Doméstico: Utilizan conexiones IDE ATA100/133 (ATA100 y ATA133, hasta 100 MB/seg y 133 MB/seg) o Serial ATA (SATA) 150/300 .(150 MB/seg y 300 MB/seg), siendo más recomendable el uso de Serial ATA frente a IDE ya que este último es más antiguo, de todas formas SATA300 tiene suficiente ancho de banda para los discos actuales de 7.200 Rpms y para los Raptor/Velociraptor de 10.000 Rpms, e incluso para los nuevos SSD (Solid State Drive, Dispositivo de Estado Sólido) que se comentaron en esta entrada: SSD (Solid State Drive, Dispositivo de Estado Sólido): Los nuevos discos duros.
    • Profesional/Empresarial/Corporativo: Utilizan conexion SCSI (Small Computer System Interface)160/320 (Hasta 160 MB/seg y 320 MB/seg) y SAS (Serial Attached SCSI) 3 Gbps (unos 300 MB/seg),  SAS sustituira a SCSI en breve. Tanto SCSI160/SCSI320 como SAS tienen suficiente ancho de banda para los discos SCSI/SAS de 10.000 y 15.000 Rpms.

Se puede encontrar más información en:

Resumen de las entradas: Velocidad de transferencia de datos de dispositivos de un PC y Unidades de medida


Debido a que las entradas Velocidad de transferencia de datos de dispositivos de un PCUnidades de medida para la transferencia de archivos se ha separado en un total de cinco entradas , haré una reseña que las enlace, para tenerlas más a mano.

Por último la entrada sobre Unidades de medida para la transferencia de archivos trata las unidades de medida informáticas más comunes: bps, Bps, Kbps, KBps, Gbps y GBps.

Velocidad de transferencia de datos de dispositivos de un PC (2ª parte)


En la primera parte de esta entrada vimos los puertos ISA, PCI, AGP y PCIe, ahora veremos los puertos de almacenamiento: ATA (Modo PIO), ATA (Modo DMA/UDMA), Serial ATA (SATA), SCSI y SAS.

  • Puerto ATA con Modo PIO (Programmed Input Output, Entrada y Salida Programada): Esta conexión esta totalmente anticuada (de hecho ni siquiera se usa actualmente); existen varios tipos:
    • PIO-0 (hasta 3,3 MB/seg en discos duros de unos 100 MB).
    • PIO-1 (hasta 5,3 MB/seg en discos duros de menos de 400 MB)
    • PIO-2 (hasta 8,3 MB/seg en discos de menos de 400 MB).
    • PIO-4 (hasta 16,6 MB/seg)

Sin embargo actualmente se pueden ver algunos dispositivos IDE en modo PIO (cada vez es más raro), el mayor problema de esta conexión no esta en su baja tasa de transferencia (un máximo de 16,6 MB/seg del PIO-4) sino en que para transferir un archivo de un sitio a otro (ej: entre un lector de CDs y un disco duro) es necesario que el procesador (CPU) supervise la operación reduciendo el rendimiento, esto se soluciono con la implementación del DMA (Acceso Directo a Memoria) que liberaba a la CPU de esta «supervisión». Un problema que suele presentarse en Windows es que el modo DMA puede desactivarse en caso de errores y por lo tanto el ordenador va mas lento de ahí la importancia de tener activado el modo DMA (Más información en Conozca su Hardware).

  • Puerto IDE/ATA con modo DMA/UDMA: Es el sustituto del Modo PIO, el Modo DMA/UDMA permite un mayor rendimiento, de esta norma existen varios tipos:
    • UDMA33/ATA33 (hasta 33 MB/seg), utiliza un cable IDE de 40 hilos y 40 contactos.
    • UDMA66/ATA66 (hasta 66 MB/seg), emplea un cable IDE de 80 hilos (40 de ellos son para reducir las interferencias) y 40 contactos.
    • UDMA100/ATA100 (hasta 100 MB/seg)  usa un cable IDE de 80 hilos y 40 contactos.
    • UDMA133/ATA133 (hasta 133 MB/seg), hace uso de un cable de 80 hilos y 40 contactos.

Todas estas velocidades son máximas teóricas, es decir que el bus da hasta «n» MB/seg pero el dispositivo conectado no tiene porque dar esa tasa de transferencia, de hecho los discos duros más actuales IDE de 7.200 Rpms y 8/16 MB de búfer tienen unos 40 MB/seg aproximadamente de tasa de transferencia sostenida (ningún disco IDE 7.200 Rpms llega ni siquiera a saturar por si mismo un bus ATA66, aunque si hay dos dispositivos seguramente si se sature sobre todo si ambos son discos duros). Una desventaja del sistema IDE es que comparte el bus con otro dispositivo (ej: Canal Primario Master y Canal Primario Slave) con lo cual la transferencia entre ambos dispositivos es más lenta, ya que el acceso a estos es de forma alterna y no simultánea. Actualmente este puerto ha sido sustituido por Serial ATA (SATA) en discos duros y próximamente en unidades ópticas (Lectores, DVD, Grabadoras DVD,…). Actualmente los discos IDE son de 5.400 Rpms (ya son difíciles de encontrar en 3,5″) y de 7.200 Rpms (no existen modelos de más Rpms), así mismo existen modelos que permiten un uso intensivo 24 / 7 (24 x 7) es decir 24 horas al día los 7 días de la semana, como por  ejemplo: Discos Maxtor Max Line III entre otros modelos (Más información en Conozca su Hardware).

  • Puerto Serial ATA (SATA ó S-ATA): es el nuevo estándar para conectar discos duros (y seguramente también se sumen las unidades ópticas en breve por las mejoras que tiene) utiliza un cable de datos de 7 hilos/contactos en lugar de los 40 hilos/contactos del ATA y un conector de alimentación de 15 pines en lugar del Molex de 4 pines (los primeros discos duros SATA tenian ambos conectores, aunque sólo se utilizaba uno de ellos); por ahora existen dos variantes :
    • Serial ATA150/SATA150 (hasta 1,5 Gbps, unos 150 MB/seg).
    • Serial ATA300/SATA300 (hasta 3 Gbps, unos 300 MB/seg).

El próximo estándar será SATA600 (hasta 6 Gbps, unos 600 MB/seg) que debe estar a punto de salir al mercado. Las características más destacables de Serial ATA son:

  1. La posibilidad de conexión/desconexión en caliente (con el ordenador encendido) como USB/Firewire de hecho en muchos casos Windows XP detecta los discos duros SATA como unidades extraíbles.
  2. Eliminación del concepto Master/Slave al tener una conexión directa desde la placa base al dispositivo, el bus de datos no es compartido como ocurre con el sistema IDE.
  3. Posibilidad de usar cables más largos (1 metro en SATA frente a los 45cm de ATA que son el máximo teórico aunque existen cables algo más largos, como SATA de 1,20 y ATA de 90cm).
  4. Formato externo, eSATA150 y eSATA300 que permite conectar unidades SATA desde el exterior del ordenador prácticamente con el mismo rendimiento que si estuvieran instalados dentro del ordenador. Los cables eSATA (external SATA) pueden llegar hasta 1,8 metros.
  5. Uso de la tecnología NCQ (Native Command Queuing) que mejora el rendimiento al reordenar las peticiones de archivos.
  6. Los discos duros SATA actuales son de 7.200 Rpms (salvo los Western Digital Raptor/Velociraptor que son los únicos SATA150 por ahora de 10.000 Rpms), al igual que en el caso de los ATA los SATA no saturan el bus de datos (los 150 ó 300 MB/seg en tasa de datos mantenida) fácilmente ya que su rendimiento esta muy próximo a los ATA, aunque es algo mejor debido a que tienen un mayor bufer e incorporan tecnología NCQ; así mismo existen modelos SATA que permiten un uso intensivo 24 / 7 (24 x 7) es decir 24 horas al día los 7 días de la semana (ej: Discos Maxtor Max Line III, Seagate Barracuda 7200.11ES, o Western Digital Raptor/Velociraptor entre otros modelos). Actualmente tambien los discos SSD (Solid State Disk, Discos de Estado Sólido basados en memorias flash) también usan los conectores SATA como sistema de conexión a placa base. Más información en: Wikipedia y Serial ATA.org).
  7. Uso de un cable de datos más aerodinámico incluso si se compara con un cable IDE/ATA redondo (Como se puede apreciar el cable SATA es mas «delgado» que el IDE lo cual mejor el flujo de aire dentro de la caja del ordenador, por eso suele decirse que son más «aerodinamicos».), como se puede ver en esta imagen de forospyware:

cable_ide_sata

  • SCSI-320: SCSI (Small Computer System Interface) es un bus de conexión paralelo para conectar dispositivos (actualmente únicamente discos duros, aunque en su día este bus tenia dispositivos como escáner o grabadoras de CD), que permite conectar 8/16/32 dispositivos segun el tipo de conexion SCSI (el IDE admite dos dispositivos por canal, y si contamos los dos canales seria un máximo de 4 canales) teniendo en cuenta que la tarjeta SCSI se comporta como un dispositivo más lo cual haría un total de 7/15/31 dispositivos según el tipo de conexión SCSI:
    • SCSI-320 tiene una tasa máxima de 320 MB/seg.
    • SCSI-160 (Ultra-3) que es capaz de transmitir hasta 160 MB/seg).
    • SCSI Ultra-2, hasta 80 MB/seg.
    • Ultra-SCSI, hasta 40 MB/seg.
    • Además de otras revisiones anteriores con menores prestaciones.

La ventaja de este bus es que no se satura tan fácilmente como el IDE a pesar de tener varios dispositivos conectados, actualmente los discos duros SCSI son de 10.000 Rpms ó 15.000 Rpms son los más rápidos del mercado (y también los más caros); se usan en entornos profesionales donde prima el rendimiento, además permiten un funcionamiento intensivo 24 / 7 (24 x 7) es decir 24 horas al día los 7 días de la semana. El SCSI actual será sustituido por SAS (Serial Attached SCSI) dentro de un tiempo (Más información en Wikipedia en español, y en inglés).

  • SAS (Serial Attached SCSI): Es un nuevo sistema de conexión SCSI en serie que aumentara la velocidad y permitirá la conexión y desconexión en caliente (algunos discos SCSI permiten la conexión Hot-Swap al igual que los SATA), admite la conexión de hasta 16.384 dispositivos (SCSI solo admite 8/16/32 segun el tipo) y puede usar cables de hasta 8 metros. SAS utilizará el mismo conector que SATA pudiendo usar estos discos ahorrando costes para aplicaciones de pocas prestaciones, es decir que una controladora SAS admite tanto discos duros SAS como SATA, pero una controladora SATA únicamente admite discos SATA (Más información en Wikipedia en español, y en inglés).

La apariencia de los cables SCSI y SAS (Serial Attached SCSI) son similares físicamente al cable IDE (similar a SCSI) y SATA (similar a SAS), respectivamente.

En esta imagen de una Gigabyte EP-45-DS5 (Chipset Intel P45 para Socket 775/LGA 775 de algunos Pentium 4 y los Core 2 Duo/Core 2 Quad actuales) se pueden apreciar: El puerto IDE (un rectangulo de color verde (en algunas placas base hay dos puertos IDE), justo debajo de los dos disipadores de cobre) y los puertos Serial ATA (SATA), 6 de color amarillo y 4 de color morado (el numero de puertos Serial ATA puede variar de un modelo de placa base a otro, las placas más antiguas suelen tener 2 conectores SATA, mientras que lo normal actualmente es que un modelo normal tenga entre 4 y 6 conectores SATA)

ga-ep45-ds5-pci-pcie

En cuanto a los conectores SCSI y SAS (no se suelen implementar en placas base domésticas debido a su alto coste de fabricación, aunque en placas para servidores de empresa si es frecuente que se integren este tipo de conectores) se pueden apreciar por ejemplo en las controladora Adaptec SCSI Card 29320A-R con 3 conectores internos (uno Ultra-320 de 68 pines, uno Wide Ultra de 68 pines y otro Narrow Ultra de 50 pines) y otro externo (un HD de 68 pines)

adaptecscsicard29320a-r

Y la controladora Adaptec RAID 2405 que tiene un conector SAS interno (SFF-8087) MiniSAS en la parte trasera de la tarjeta:adaptecsas2405

En la siguiente entrega veremos los puertos del I/O Shield (la parte trasera de la placa base donde se estan los conectores (PS/2, Serie, Paralelo, USB, RJ-45,…) conectan los dispositivos externos como ratón, teclado, impresora,…).