Memorias USB 3.0: Mach Xtreme FX Series y Super Talent (Express Duo, Express Drive y DriveRAID)


En esta entrada del Blog comente la memoria flash A-Data Nobility N005 una de las primeras memorias flash USB 3.0 de alto rendimiento (Hasta 85 MB/Seg en lectura y 55 MB/Seg en escritura), según parece los fabricantes de memoria flash comienzan a diseñar productos que utilizan el nuevo puerto USB 3.0 (Soporta hasta 4,8 Gbps, unos 4.800 Mbps que equivalen a unos 600 MB/Seg) frente al antiguo USB 2.0 (Soporta hasta 480 Mbps, unos 60 MB/Seg). Entre ellos Mach Xtreme comercializa un serie denominada FX que tiene un rendimiento con USB 3.0 de hasta 125 MB/Seg en lectura y de 55 MB/Seg en escritura para la unidad de 16 GB y de  unos 80 MB/Seg para las unidades de 32/64 GB, el precio de la unidad de 32 GB es de unos 100 € mientras que el modelo de 64 GB ronda los 165 € (En ambos casos sin contar gastos de envío si los hubiese) se pueden encontrar en Hardmodding y PCCool (Dos tiendas online de Portugal).

En este video de Youtube se puede encontrar una reviews:

Así mismo parece que también Super Talent otros de los fabricantes de memorias flash ha diseñado el Express Duo (Información de TechPowerUp en inglés) para competir en el mercado de gama “baja” ya que su capacidad en principio esta “limitada” a 8 y 16 Gb y su rendimiento por USB 3.0 es de hasta 67 MB/Seg en lectura (Lo que no esta nada mal) pero su tasa de escritura “baja” hasta los 23 MB/Seg algo lejos de los 55 MB/Seg de la A-Data Nobility N005 y FX Series de 16 GB.

Por otra parte Super Talent comercializa en la gama alta dos modelos:

  • Express Drive USB 3.0 que tiene hasta 120 MB/Seg en lectura y hasta 43 MB/Seg en escritura; el modelo de 16 GB ronda los 49 €.

  • RAIDDrive USB 3.0 que tiene hasta 315 MB/Seg en lectura y hasta 141 MB/Seg en escritura (Su alto rendimiento se debe al uso de un RAID 0 interno), el modelo de 32 GB ronda los 210 €.

Ambos son compatibles con USB 2.0 aunque perdiendo rendimiento ya que el bus USB 2.0 tiene menor ancho de banda.

Lógicamente para poder aprovechar el rendimiento que ofrece un dispositivo USB 3.0 se necesita un puerto USB 3.0 ya que de lo contrario el dispositivo funcionara “limitado” como USB 2.0, es decir que en este caso el componente “limitante” sería el puerto USB en si mismo, por el contrario si usamos un dispositivo USB 2.0 en un puerto USB 3.0 el rendimiento del dispositivo USB no “mejorará” sino que estará limitado por el rendimiento del dispositivo USB en si mismo y no por el conector.

Anuncios

Guía para comprar una fuente de alimentación de ordenador


Hace unos días comente en esta entrada: Consumo en watios de los equipos informáticos, el tema del consumo de los equipos informáticos. Los ordenadores actuales cada vez consumen más watios (aunque también son más eficientes en cuanto a consumo, es decir un equipo actual es más rápido que un equipo de hace unos años, sin embargo tiene un consumo de watios similar) por lo que es necesario usar una fuente de alimentación que pueda alimentar el equipo  correctamente, a fin de evitar posibles problemas (ej: Bloqueos, Reinicios,…). En internet existen varias páginas:

  • Adecy (Athlon K7 y K8 (Athlon 64), y Pentium 4).
  • Jscustompcs (Athlon 64, Opteron, Phenom y Pentium 4).
  • Calculadora de SnooP (Athlon 64, Opteron, Phenom, Pentium 4 y Core 2 Duo/Quad, tiene bastantes opciones aunque esta algo desactualizada).
  • Extreme.outervision (Athlon XP (K7), Athlon 64, Opteron, Phenom/Phenom II, Pentium 4, Core 2 Duo/Quad y Xeon; actualmente es uno de los calculadores de watios con más opciones).

Que pueden servirnos para saber el consumo aproximado en watios del equipo, y así poder elegir una fuente acorde con este. Las fuentes actuales tienen PFC Pasivo o bien PFC Activo, el tipo de PFC (Power Factor Correction) en los modelos más asequibles es PFC Pasivo generalmente, mientras que en los modelos más caros tienen PFC Activo (Articulo de Madbox PC y SilverStone (en inglés) sobre los tipos de PFC).

Fuente Modular

Fuente Modular

No obstante una fuente de alimentación no solamente se debe valorar únicamente por los watios que “anuncia”, sino por otras características como son:

  • La relación Watios/Amperios que es capaz de dar la fuente en todas sus líneas: +3,3v; +5v; +12v; -5v (usados en las antiguas tarjetas ISA); -12v y +5vsb, parece que esto esta relacionado con:
    • La cantidad de watios, por regla general a mayor cantidad de watios, mayor cantidad de amperios.
    • El tipo de PFC ya que las que lo llevan activo suelen tener una relación Watios/Amperios superior a las de PFC pasivo con a igualdad de Watios.
  • El certificado para norma ATX, el último certificado/estándar es la versión 2.20 del año 2.005.
  • Certificaciones para uso de:
    • Procesadores Dual/Quad Core (nos asegura que que podremos usar un procesador Dual/Quad Core sin problemas).
    • Sistemas SLI de nVidia para usar dos gráficas simultáneas (Actualmente algunas placas base de gama alta admiten QuadSLI usando tarjetas gráficas con doble GPU como es el caso de la nVidia GTX295 (consume unos 290w) o la Ati HD4870 x2 (consume unos 286w). Hay que tener en cuenta que no es igual montar un SLI con:
      • Dos GF9800GT que tienen un consumo total de unos 230w (cada una consume unos 115w).
      • Dos GTS250 que tienen un consumo total de unos 300w (cada una consume unos 150w).
      • Dos GTX260 que tienen un consumo total de unos 364w (cada una consume unos 182w)
      • Dos GTX285 que tienen un consumo total de unos 366w (cada una consume unos 183w).
      • Dos GTX295 que tienen un consumo total de unos 580w (cada una consume unos 290w).
    • Sistemas Crossfire (CF) de Ati para usar dos gráficas simultáneas. Hay que tener en cuenta que no es igual montar un CF con:
      • Dos Ati HD4770 que tienen un consumo total de unos 160w (cada una consume unos 80w).
      • Dos Ati HD48650 que tienen un consumo total de unos 212w (cada una consume unos 106w).
      • Dos Ati HD4870 que tuenen un consumo total de unos 314w (cada una consume unos 157w).
      • Dos Ati HD4890 que tienen un consumo total de unos 380w (cada una consume unos 190w).
      • Dos Ati HD4870 x2 que tienen un consumo total de unos 572w (cada una consume unos 286w).
  • Sistema de “protección” contra sobrecargas y/o sobretensiones dentro de un margen (lo más efectivo para esto es un SAI aunque una regleta especifica podría ayudar también claro que no da la ventaja del SAI que es poder tener el ordenador un tiempo encendido para poder guardar y cerrar correctamente el sistema operativo, en esta entrada (Sistemas de protección para dispositivos eléctricos: Regletas y SAI (Sistemas de Alimentación Ininterrumpida) hay más información sobre estos sistemas de protección eléctricos); conectores para discos duros y graficas específicos que “filtran” la corriente que les llega…
  • El tipo y cantidad de conectores (Los tipos de conectores de una fuente de alimentación se vieron en esta entrada: Conexiones de corriente de una fuente de alimentación de ordenador) de alimentación:
    • Actualmente el conector ATX es de 24 pines (20 pines + 4 pines).
    • Actualmente el conector ATX de 12v es de 8 Pines (4 + 4 pines).
    • 4 pines “grandes” para discos duros; lectores, tarjetas gráficas AGP;….
    • 4 Pines “pequeños” para disquetera o elementos que los utilicen.
    • Conectores Serial ATA (SATA) integrados para discos duros y unidades ópticas SATA, para no tener que recurrir a conversores de Molex de 4 pines a SATA.
    • Conectores PCIe (algunas tarjetas de gama media/alta necesitan una conexión de alimentación extra de la fuente) de 6 ú 8 pines para no tener que recurrir a posibles adaptadores/comversores. Por ejemplo algunas tarjetas de gama media/alta (ej: GeForce GTX260 y Ati 4870) llevan dos conectores PCIe de alimentación, por lo que si la fuente de alimentación tiene un solo conector PCIe de 6/8 pines sería necesario utilizar un adaptador que suelen llevar las propias tarjetas gráficas.
  • La longitud de los cables de los conectores, algunas fuentes tienen los cables “cortos” y para cajas de gran tamaño puede ser necesario usar algún “alargador” para dar mayor longitud a los conectores para que puedan llegar sin estar “tensos” o molesten al estar los cables por medio, en el peor de los casos puede ser necesario usar prolongadores.
  • Su refrigeración sobre todo si buscas “silencio” (descartando los modelos totalmente pasivos por ser bastante más caros que modelos “silenciosos” como Seasonic, Corsair, Zalman o BeQuiet por ejemplo). Algunos modelos por ejemplo al apagar el ordenador siguen funcionando unos minutos para ayudar a sacar el calor (evitando lo que se conoce como “muerte térmica”).
  • La garantía, normalmente estos productos tienen 2 años de garantía, sin embargo algunos fabricantes especifican periodos de garantía mayores, por ejemplo algunos modelos de Corsair tienen 5 años de garantía.
  • El peso (Kilogramos) de la fuente, las fuentes genéricas no suelen pesar casi nada, mientras que las fuentes “buenas” suelen pesar bastante, entre 1,75 y 2,75 kilogramos aproximadamente.
  • Tiempo medio entre fallos (MTBF), es el tiempo de vida estimado del producto antes de fallar, normalmente viene expresado en miles de horas (entre 100.000 y 150.000 horas) y con una carga determinada o una temperatura concreta; en principio a menor carga y/o temperatura de funcionamiento mayor tiempo de vida (Horas MTBF) estimado.
  • Extras útiles como pueden ser:
    • Cables recubiertos por una malla (se supone que ocupan menos y son mas “manejables”).
    • Sistema de conexión modular (esto es relativo; permite añadir conexiones a la fuente según las necesidades).
    • Tener un interruptor que corte la corriente (quizás parezca una “chorrada” pero no todas las fuentes lo tienen, y es muy útil por ejemplo por si trasteamos el equipo sin miedo a que se encienda solo y pueda producirse un cortocircuito al tocar alguna pieza eléctrica con algo metálico).
  • Extras decorativos (Modding): Efecto UV (Ultravioleta); Carcasas traslúcidas; Ventiladores con Leds (Luces);…. Esto último es más bien relativo ya que no mejora el rendimiento sino que solamente mejora el aspecto visual (la estética) del producto.

Se puede encontrar más información en:

Software para testeo (comprobación) de Memorias Flash


Actualmente es muy común el uso de dispositivos de memoria flash ya sean en formato:

  • USB como es el caso de los “pendrives” (Memorias Flash USB) que actualmente los fabrican una gran cantidad de empresas con diversas capacidades y diseños, los de mayor capacidad creo que actualmente llegan a 64 GB, aunque no sería raro ver en unos meses algunos de mayor capacidad.
  • Tarjeta de memoria de las que existen una gran variedad de formatos, entre otros:
    • SD (incluyendo MiniSD, MicroSD y TransFlash).
    • MMC (incluyendo RS-MMC).
    • Sony Memory Stick (incluyendo las versiones Pro y Duo, entre otras variantes).
    • xD (De Olimpus y Fujifilm).
    • Compact Flash.
    • IBM Microdrive.

Sin embargo en algunas ocasiones estos dispositivos pueden dar fallos bien por:

  • La memoria flash tenga algun tipo de error dejandola inservible de forma total o parcial.
  • Porque la memoria flash sea una falsicación (hay muchas memorias flash de alta capacidad “Made In China” que son falsificaciones de productos originales y tienen mucha menor capacidad de la que anuncian y en consecuencia se producen una corrupción (daño) en los datos almacenados ya que aunque se puedan “guardar” no son accesibles).

Si se piensa utilizar algún software de testeo para la memoria flash, es aconsejable que este vacía (sin datos) ya que algunos test es posible que tengan que borrar los datos existentes en la memoria flash, con la consecuente pérdida de los mismos.

Para detectar este tipo de problemas podemos usar varias aplicaciones como por ejemplo:

  • Flash Memory Tool Kit: Es una Suite (conjunto de programas) de pago, aunque existe una versión de prueba que tiene algunas limitaciones (han desactivado algunas funciones) que tiene varias funciones:
    • Permite Obtener Información del dispositivo USB.
    • Detectar Errores en la memoria flash.
    • Recuperar ficheros que se hayan borrado de la memoria flash (aunque para hacer eso supongo que no podrán sobreescribirse ya que sino su recuperación sería improbable).
    • Borrado de ficheros seguro, para no ser recuperables.
    • Backup/Restore: Hace una copia de seguridad de los datos de la memoria flash que posterirmente puede ser restaurada en caso necesario.
    • Test de rendimiento (Benchmark): Tiene dos tipos de mediciones: Low Level y File (Archivos).
  • H2Testw (la página esta en alemán, aunque en SOS Fake Flash hay información en inglés): Esta disponible en alemán e inglés, se puede descargar desde este link: http://www.heise.de/ct/Redaktion/bo/downloads/h2testw_1.4.zip (la página esta en alemán), el programa tiene varias opciones:
    • Verificar una parte de la memoria o toda la memoria flash.
    • Escribir y Verificar una parte de la memoria o toda la memoria flash.
  • Check Flash: Es un programa desarrollado por Cherkes Mihail que permite verificar las memorias flash, se puede descargar de forma directa desde: http://mikelab.kiev.ua/PROGRAMS/ChkFlsh.zip. Hay que tener en cuenta que este archivo zip ademas del archivo ChkFlsh.exe que es el programa en si mismo, contiene dos archivos mas:
    • Un archivo denominado “Danger.bat” (es un archivo por lotes de MS-DOS) que habilita el análisis en todas las unidades de disco, por lo que debe usarse cuidadosamente.
    • Otro archivo denominado Switches.txt que contiene las sintaxis para ejecutar las ordenes a traves de la consola de comandos.
  • FlashNul: Es un programa ruso que funciona con la consola de comandos (no es un programa “Windows”, por lo que es algo más complicado de manejar que los anteriores), permitiendo testear las memorias flash. Se puede descargar de forma directa desde: http://shounen.ru/soft/flashnul/flashnul-0.993.zip (la web es rusa).

Thermal Design Power (TDP) de los procesadores (CPU)


procesadores

Actualmente la tendencia de los fabricantes de procesadores como Intel o AMD entre otros, es hacerlos lo más “ecológicos” posibles para reducir su consumo pero sin disminuir su rendimiento, para ello han desarrollado tecnologías como:

  • Power Now!: Desarrollada por AMD, es similar al C&Q pero se aplica a procesadores de portátiles.
  • Cool’n’Quiet (También se denomina CnQ o Cool & Quiet (C&Q), en español significa: Fresco y Silencioso): Desarrollada por AMD permite reducir la frencuencia (Mhz) del procesador y voltaje cuando no es necesario que funcione a plena potencia, de esta forma ahorramos energía y reducimos el consumo eléctrico. Se aplica a procesadores de Sobremesa. Los procesadores Opteron (de Servidores) utilizan una variante denominada: Optimized Power Management.
  • Speed Steep (EIST): Desarrollada por Intel, su funcionamiento es similar al C&Q de AMD, es decir reduce la frecuencia (Mhz) y voltaje del procesador cuando no es necesario.
  • C1 Enhanced (C1E):  Gestiona la energía que consume el procesador ralentizado algunas funciones del sistema cuando no están en uso para reducir el consumo global de energía, lo usan tanto Intel como AMD.

Para poder aprovechar estas tecnologías de ahorro energético es necesario tener un sistema operativo compatible con ellas como por ejemplo: Windows XP, Windows Vista o Linux (a partir del Kernel v2.6).

Si se hace overclock (forzar una pieza por encima de sus valores de fábrica) suele ser recomendable desactivar los modos de ahorro de energía comentados, aunque si la placa base los aplica correctamente pueden dejarse.

Sin embargo aunque los fabricantes de procesadores (AMD e Intel) incluyen este tipo de tecnologías en sus procesadores, los TPD de sus procesadores son diversos por ejemplo:

  • AMD Athlon64 x2 6000+ AM2, core “Windsor” fabricado a 90 nanometros (90 nm) con 3 Ghz por core y 1 MB L2 por core, tiene un TPD de 125w, algo lejos de los 89w que tenían otros procesadores “Windsor” de menor velocidad, muy lejos de los 65w de los “Windsor EE” (Energy Efficient), e incluso lejísimos del Athlon X2 3800+ EE (Energy Efficient) SFF (Small Form Factor) con 2 Ghz por core, 512 KB L2 por core y un TPD de tan sólo 35w, diseñados para equipos tipo Barebone donde los sistemas de disipación son más limitados al haber menos espacio físico.
  • AMD Athlon64 x2 6000+ AM2, core “Brisbane” fabricado a 65 nanometros (65 nm) con 3,1 Ghz por core y 512 KB L2 por core, tiene un TPD de 89W, algo lejos de los 65w que tenían otros procesadores “Brisbane” de menor velocidad e incluso muy lejos de los 45w de los “Brisbane EE” (Energy Efficient), como es el caso del 4850e (2,5 Ghz por core y 512 KB L2 por core) y 5050e (2,6 Ghz por core y 512 LB L2 por core).
  • Los nuevos AMD Phenom tienen un TPD que oscila entre los 140w (del Phenom x4 9950) y los 89w de algunos Phenom x3.
  • Los “antiguos” Pentium 4 core “Prescott” tienen un TPD que oscila entre los 130 y 68w.
  • Los Core 2 Duo/Quad tienen un TPD que oscila entre los 136w y los 65w.

Logicamente cuanto mayor sea el TPD de un procesador mayor cantidad de calor producira y por lo tanto será necesario un sistema de refrigeración mejor si no queremos ver altas temperaturas en el procesador con los consecuentes “problemas” como por ejemplo:

  • Reducción de Mhz, los primero Pentium 4 integraban una tecnología denominada Thermal Throttling que en caso de sobrecalentamiento reducían los Mhz del procesador, lo cual generaba una pérdida de rendimiento en aplicaciones exigentes.
  • Reinicios o Apagados del equipo, casi todas las placas base actuales dispone de sistemas de aviso (alerta) en caso de sobrepasar una temperatura especificada en BIOS e incluso pueden llegar a apagar el equipo si se sobrepasa otra temperatura superior a la anterior también especificada en BIOS para que de esta forma se eviten posibles daños al procesador por sobrecalentamiento.

Más información en:

ioDrive de Fusion-IO, memoria SSD de alto rendimiento con PCIe


Ha poco comente la existencia del I-RAM en esta entrada (un dispositivo que permite usar memoria RAM para almacenamiento masivo) y de los SSD (Solid State Drive, Dispositivos de Estado Sólido) en esta otra entrada, estos últimos acabaran sustituyendo en un futuro próximo a los discos duros tradicionales al menos para albergar el sistema operativo y sus aplicaciones (programas y juegos).

iodrive

Ahora la empresa Fusion-IO ha sacado rencientemente un dispositivo llamado ioDrive (Imagen superior), basado en memoria flash y que utiliza el conector PCIe de 4x (mucho más rápido que el conector SATA150/SATA300 que usan los SSD actualmente), puede tener una capacidad de entre 80 y 640 GB (lo que solucionaria el problema de espacio de los SSD actuales), y tiene un rendimiento de hasta 800 MB/seg en lectura de datos y de 600 MB/seg en escritura, aunque su precio actualmente es prohibitivo, el GB sale a unos 30 $, lo que significa que los 640 Gb rondan los 19.200 $.

No contentos con el rendimiento del ioDrive, el fabricante ha sacado otro modelo con mejores prestaciones denominada ioDrive Duo (Imagen inferior) del que existen versiones de 160 GB hasta 640 GB, y dentro de poco saldra una versión de 1.280 GB (o lo que es lo mismo de 1,28 Terabytes), su rendimiento es de hasta 1.500 MB/seg (1,5 GB/seg) en lectura y 1.100 MB/seg (1,1 GB/seg) en escritura, usa el bus PCIe de 8x ó un PCIe 2.0 de 4x.

Más información en: