Cheat Engine: Programa para editar los códigos de los juegos


Cheat Engine es un programa (Desensamblador de memoria) que permite modificar los parámetros de los juegos (Incluyendo los juegos flash), la última versión a fecha de la entrada (4 de febrero de 2010) es la versión 5.6 (Información de Softonic), pudiendo facilitar o aumentar la dificultad del juego (Por ejemplo puede reducir la cantidad de vida o munición en un juego aumentando la dificultad del mismo, o viceversa), hay que tener en cuenta que este programa necesita utilizar ciertos recursos de bajo nivel que algunos antivirus durante su instalación (Ej: Nod32) pueden detectar como virus pero no es así, de hecho al abrir el programa una vez ya instalado el antivirus no “salta” al ejecutar el programa.

Por otra parte en la propio sitio web hay varios Tutoriales sobre el programa e incluso algunas tablas preparadas para trucar algunos juegos.

Uno de los juegos que pueden “trucarse” es la Serie SAS: Zombie Assault (Un juego flash de acción) ya comentado en esta entrada del Blog, en Youtube se puede encontrar un tutorial para conseguir dinero ilimitado en SAS: Zombie Assault (Esto en principio tambien podría hacerse con la munición):

SAS: Zombie Assault 2 (Para SAS: Zombie Assault 2 Insane Asylum sigue un esquema similar, en este caso parece ser que no es posible aumentar la cantidad de dinero para comprar armas, aunque si podemos dejar las armas (Pistola, Escopeta, Rifles, Granadas,…) con el que podemos conseguir granadas infinitas.

Hay que tener en cuenta que estos trucos suelen permitir munición infinita de armas (Ej: Pistola, Escopeta, Rifles, Granadas,…) lo cual puede ayudar bastante en el transcurso del juego puesto que no es necesario recargar.

Anuncios

Guía para comprar una televisión plana (LCD o Plasma)


Independientemente del tipo de televisión que elijamos (LCD o Plasma, comentadas en esta entrada: Televisiones planas ¿LCD o Plasma?) hay ciertos factores a tener en cuenta a la hora de elegir una, entre ellos:

La resolución, que puede ser:  HD Ready 720p (1.280×720 píxeles), o Full HD  (1.920×1.080 píxeles), Actualmente Full HD se denomina HD Ready 1080p, como se comenta en esta entrada: HD Ready vs. Full HD (Ahora denominada HD Ready 1080p). La elección de una resolución u otra depende de:

  1. La distancia a la que vamos a ver la televisión (Esta relacionada con la resolución), en Deaparatos, Foro El Septimo Arte y La Dosis Diaria, se puede encontrar algún ejemplo para calcular la distancia y la resolución adeacuada.
  2. El tamaño de la televisión (Diagonal o pulgadas), según comentan en Que Sabes de aunque no existe una regla para calcular la diagonal recomendada en función de la distancia, sin embargo si comentan que FullHD se hace más visible en pantallas de 37″ o más (Aunque también depende de la distancia de visionado).
  3. El contenido que se va a visualizar en la televisión, por ejemplo si vamos a ver películas en formato DVD (720 x 576 pixeles en PAL, 720 x 480 píxeles en NTSC) o contenido audiovisual con resoluciones similares (ej: TDT, Consolas como la PS2/Xbox,…) con una televisión HDReady (1.280 x 720 píxeles) sería suficiente; por el contrario si pensamos reproducir contenido en Alta Definicion como por ejemplo discos Blu Ray/HD-DVD o visualizar contenidos en resoluciones similares (ej: Consolas como Play Station3 (PS3) o Xbox360) seguramente saquemos mayor partido a una televisión FullHD 1080p (1.920 x 1.080 píxeles) porque el contenido HD suele ser 1.080p.

De todas formas es posible que actualmente no tenga mucho sentido comprar una televisión LCD HD Ready 720p (1.280×720 píxeles) ya que actualmente los LCD Full HD 1080p (1.920×1.080 píxeles) han bajado bastante de precio, y una televisión por regla general suele ser una compra a largo plazo, para varios años.

El tipo de panel LCD (En esta entrada: Paneles LCD ¿TN, IPS y VA? hay más información sobre los tipos de paneles), que puede ser:

  • TN (Twisted Nematic) + FILM: Son los paneles más antiguos y asequibles, tienen muy buen tiempo de respuesta, pero su calidad de imagen (presentan bastante desviación cromática, tienen una profundidad de color de 6 Bits, representando 270.000 colores, aunque los 2 bits que faltan para tener una gama de 16,2 millones de colores se consiguen por interpolación) y ángulos de visión en los extremos (laterales o verticales) son bastante malos distorsionando la imagen. Destacan en juegos y la reproducción de peliculas, ya que no tiene Ghosting (Imagen fantasma) debido a su tiempo de respuesta de muy bajo, de unos pocos milisegundos (ms)… Actualmente son los más habituales y también los más asequibles.
  • IPS (In-Plane Switching, Conmutación En Plano): Es una tecnología que apareció en 1.996 de la mano de Hitachi son más caros que los otros paneles (TN y VA), pero a cambio consiguen mayor fidelidad cromática (apenas tienen desviacíon cromática, tienen una profundidad de color de 8 Bits, representando 16,7 millones de colores, aunque existen modelos de hasta 10 bits), buenos ángulos de visión y contraste del color negro, pero tienen un tiempo de respuesta algo peor que los TN y VA, son más caros que los paneles TN y VA, suelen utilizarse para edición fotográfica.
  • VA (Vertical Alignment,  Alineación Vertical): Fue desarrollada en 1.998 por Fujitsu como una opción intermedia entre los paneles TN y los IPS. Los paneles VA tienen una leve desviación cromática (tienen una profundidad de color de 8 Bits, representano 16,7 millones de colores), un tiempo de respuesta relativamente bajo (más cercano a los TN), un contraste alto (similar a los TN), aunque son más caros que los TN pero más asequibles que los IPS, suelen utilizarse en edición fotográfica, aunque los IPS para esta tarea son mejor opción.

El tiempo de respuesta: A menor tiempo de respuesta menor posibilidad de Ghosting (Imagen Fantasma o “Estelas”), se mide en milisegundos (ms). Los monitores actuales suelen estar entre 2 y 5 ms, aunque hay que tener en cuenta que existen diferentes tiempos de respuesta:

  • ISO ( White to Black, De Blanco a Negro): Suele tardarse algo más de tiempo y debería ser el “estándar”.
  • GtG (Grey to Grey, De Gris a Gris): Suelen usarlos muchos fabricantes porque es más “rápido” que el ISO (Un LCD tarda más en pasar el color de los píxel de Blanco a Negro, que de Gris a Gris).

Actualmente es raro que se de el efecto de Ghosting (Imagen Fantasma o “Estelas”), aunque cuando aparecieron los primeros LCD/TFT si que se podía apreciar en algunos modelos.

Contraste: A mayor contraste mayor calidad de imagen entre los colores/tonos blanco y negro, aunque actualmente muchos modelos llevan contraste dinámico que no es un constraste real, siendo el contraste real muy inferior normalmente al dinámico.

Brillo, Luminancia o Luminosidad (cd/m2): Se mide en candelas por metro cuadrado, a mayor número, mayor luminosidad, por ejemplo un LCD con 300 cd/m2 tiene menos luminosidad que uno con 400 cd/m2.

TDT Integrado (En esta entrada hay más información sobre la tecnología TDT: TDT (Televisión Digital Terrestre) y HDTV (Televisión de Alta Definición) en España), puede un TDT convencional para recibir la señal actual, o bien un TDT compatible con HDTV 1080p, este último es compatible con señal de television Full HD que será la generación siguiente al TDT actual.

Conexiones de Audio y Video (En estas dos entradas (Conexiones de vídeo más frecuentes y Conexiones de audio más frecuentes) hay más información), aunque a modo de resumen se puede decir que las televisiones actuales suelen llevar:

  • Video compuesto (RCA) o S-Video: Actualmente es poco frecuente que una televisión LCD lleve esta conexión ya que es algo antigua, y esta siendo sustituida por el Euroconector/SCSART.
  • Varios Euroconectores/SCART.: Reciben la señal de video y audio en formato analógico por lo que no son compatibles con HD Ready o superior. Actualmente han sido sustituidos por los conectores HDMI (High-Definition Multi-media Interface, Interfaz Multimedia de Alta Definición) que se implementan en muchos DVDs, Consolas (Ej: PS3 o Xbox360) y Reproductores de Alta Definicion (Blu Ray o HD-DVD).
  • Alguna conexion de Video por componentes: Reciben la señal de video (No admite audio) en formato analógico por canales separados, pueden reproducir contenido en alta definición pero al no incluir el sistema de protección HDCP (Dynamic Host Configuration Protocol, Protocolo Configuración Dinámica de Anfitrión) tienen una resolución inferior.
  • Algún conector VGA (D-Sub15) o Entrada PC: Recibe la señal de vídeo (No admite audio) en analógico, aunque es compatible con altas resoluciones como HD Ready o FullHD, no implementa tecnología HDCP por lo que no puede reproducirlas.
  • Varios conectores HDMI (High-Definition Multi-media Interface, Interfaz Multimedia de Alta Definición): Reciben la señal de video y audio en formato digital encriptado (Usan tecnología DHCP) pueden reproducir contenido HD Ready o superior. En principio cuanto mayor sea el número de conectores HDMI mejor ya que de esta forma nos ahorramos tener que utilizar multiplicadores de puertos HDMI ya que este puerto será el futuro estándar en Audio/Video para las televisiones LCD y los dispositivos (DVDs, Blu Ray, Consolas,…) que conectemos a ellas. Hay que tener en cuenta que las tarjetas gráficas de ordenador actuales tienen conexión HDMI o bien utilizan un conector DVI compatible con HDCP.
  • Una conexión Minijack estéreo de 3,5 mm que funciona como entrada de audio para recibir la señal de audio analógico.
  • Dos conexiones RCA (Blanca y Roja) que funciona como entrada de audio para recibir la señal de audio analógico.
  • Entrada para auriculares.
  • Además de las conexiones anteriores algunos modelos pueden tener salidas de audio para llevar el sonido desde la televisión a otro dispositivo (ej: Una cadena musical, Un Home Cinema,…).

Otras tecnologías:

  • Tecnología de procesado de imagen: Es un software (Programa) que aplica los filtros de imagen, cada fabricante suele tener el suyo propio, por ejemplo:
    • Pixel Plus en Philips
    • Bravia Engine en Sony.
    • XD Engine en LG.
    • DNIe en Samsung.
    • TruD en Sharp.

Hay que tener en cuenta que no todos los procesadores de imagen obtienen los mismos resultados, como comentan en este artículo de El Mundo.

  • HDMI CEC (Consumer Electronics Control): Es una tecnología de comunicación bidereccional mediante el conector HDMI, que puede comunicarse los dispositivos  que haya conectados al televisor, utilizando un único mando, cada fabricante utiliza un nombre propio para esta tecnología (En Peliculas FullHD se puede encontrar más información), por ejemplo:
    • Bravia Sync Theatre en Sony.
    • Anynet+ en Samsung.
    • Bravia Link y EZsync en Panasonic.
    • SimpLink en LG.
    • HDMI Control en Pioneer.
  • Reproducción de imágenes a 60, 50 y 24 Hz (o sus multiplos como algunos televisores de 100 ó 120 Hz)
  • Ambilight de Philips: Es un sistema de retroiluminación utilizado por Philips en la línea de sus televisores planos de plasma y LCD; Ambilight permite regular el contraste dentro de la habitación (Información de Wikipedia), en este video de Youtube se puede ver una demostración de esta tecnología de Philips:

Otra opción puede ser comprar un Proyector (Comentados en esta entrada: ¿Proyector o Pantalla plana (Plasma o LCD)?) que tenga la resolución y conexiones que necesitemos.

Se puede encontrar más información sobre Guías y Consejos para comprar un LCD en:

Motor Rotativo (Rotary Engine) Wankel de Mazda


Normalmente los motores más conocidos son los clásicos de combustión interna (Gasolina y Diesel, inventados inventado por Nikolaus August Otto y Rudolf Christian Karl Diesel respectivamente) de 4 tiempos (Admision, Compresión, Combustión y Escape) con pistones y cilindros, aunque también existen motores de 2 tiempos (Admision-Compresión y Potencia-Escape), sin embargo en el mercado de la automoción existen otros motores de combustión como los rotativos (utilizan rotores en lugar de pistones y cilindros) que tienen también 4 tiempos (Admision, Compresión, Combustión y Escape).

El motor rotativo (Rotary Engine) sin pistones ni cilindros, fue diseñado por el alemán Felix Wankel en 1.924 aunque en 1.929 fue patentado., desde entonces ha sido mejorado para dar mejores prestaciones. El único fabricante de automoviles que actualmente utiliza este tipo de motor es el fabricante japonés Mazda (aunque Ford tiene un tanto por ciento de las acciones), que  en 1.967 comercializó el Cosmo Sport (un coupé de dos plazas), aunque actualmente lo han utilizado en su RX-7 y actual RX-8 (un coupé de 4 plazas y 4 puertas (las dos puertas traseras son puertas de apertura inversa (como las que tuvieron los primeros Seat 600 ó el actual Toyota FJ-Cruiser), que también se conocen como puertas de suicido o suicidas) que ha sustituido al antiguo RX-7), con motor central delantero y tracción trasera, el motor rotativo (Renesis) atmosferico (sin turbocompresor) del RX-8 se caracteriza por ser  tener poca cilindrada (1.308 CC) y una gran potencia (desde 192 CV hasta los 231 CV). Los motores rotativos son más sueaves y silenciosos que los motores con pistones y cilindros.

rx8

El motor rotativo tiene algunas ventajas como:

  • Menos piezas móviles: el motor Wankel tiene menos piezas móviles que un motor alternativo de 4 tiempos, tan solo 4 piezas; bloque, rotor (que a su vez esta formado por segmentos y regletas), árbol motriz y sistema de refrigeracion/engrase (similar a los que montan los motores de pistón). Esto redunda en una mayor fiabilidad.
  • Suavidad de marcha: todos los componentes de un motor rotativo giran en el mismo sentido, en lugar de sufrir las constantes variaciones de sentido a las que está sometido un pistón. Están equilibrados internamente con contrapesos giratorios para suprimir cualquier vibración. Incluso la entrega de potencia se desarrolla en forma más progresiva, dado que cada etapa de combustión dura 90° de giro del rotor y a su vez como cada vuelta del rotor representa 3 vueltas del eje, cada combustión dura 270° de giro del eje, es decir, 3/4 de cada vuelta; compárenlo con un motor monocilíndrico, donde cada combustión transcurre durante 180° de cada 2 revoluciones, o sea 1/4 de cada vuelta del cigüeñal. Se produce una combustión cada 120º del rotor y 360º del eje.
  • Menor velocidad de rotación: dado que los rotores giran a 1/3 de la velocidad del eje, las piezas principales del motor se mueven más lentamente que las de un motor convencional, aumentando la fiabilidad.
  • Menores vibraciones: dado que las inercias internas del motor son muy pequeñas (no hay bielas, ni volante de inercia, ni recorrido de pistones), solo las pequeñas vibraciones en la excéntrica se ven manifestadas.

Pero también tiene sus desventajas:

  • Emisiones: es más complicado (aunque no imposible) ajustarse a las normas de emisiones contaminantes.
  • Costos de mantenimiento: al no estar tan difundido, su mantenimiento resulta costoso.
  • Consumo: la eficiencia termodinámica (relación consumo-potencia) se ve reducida por la forma alargada de las cámaras de combustión y la baja relación de compresión.
  • Difícil estanqueidad: resulta muy difícil aislar cada una de las 3 secciones del cilindro en rotación, que deben ser impermeables unas de otras para un buen funcionamiento. Además se hace necesario cambiar el sistema de estanqueidad cada 6 años aproximadamente, por su fuerte desgaste.
  • Sincronización: la sincronización de los distintos componentes del motor debe ser muy buena para evitar que la explosión de la mezcla se inicie antes de que el pistón rotativo se encuentre en la posición adecuada. Si esto no ocurre, la ignición empujará en sentido contrario al deseado, pudiendo dañar el motor.

En estos videos de Youtube se puede ver el funcionamiento de un motor de explosión convención (con cilindros y pistones) y un motor rotativo:

Motor de 2 Tiempos:

Motor de 4 tiempos:

Motor rotativo:

Más información en: