VGA y DVI desaparecerán en 2015 en favor de HDMI y Display Port


Por lo que parece los fabricantes quieren eliminar las conexiones:

  • VGA (Video Graphics Adapter) o D-Sub15: Es un conector de video analógico capaz de soportar Full HD 1080p (1.920 x 1.080 píxeles), aunque el audio va por separado.
  • DVI (Digital Visual Interface, Interfaz Visual Digital): Es un conector de vídeo digital capaz de soportar hasta 2.560 x 1.600 píxeles (Superior a Full HD 1080p (1.920 x 1.080 píxeles), que por otra parte soporta HDCP (High-Bandwidth Digital Content Protection, Protección de Contenido Digital de Elevado Ancho de Banda) que es un tipo de DRM (Digital Rights Management, Gestión de Derechos Digitales).

Estas conexiones tienen varios defectos:

  • No permiten llevar audio (Aunque DVI si es compatible con HDCP si podría hacerlo
  •  son relativamente grandes pero también tienen la ventaja de que tienen “tornillos” de ajuste para que la conexión de vídeo no se pierda al mover un poco el monitor (Cosa que por ejemplo no tiene ni SCART/Euroconector ni las conexiones digitales como HDMI (High-Definition Multimedia Interface, Interfaz Multimedia de Alta Definición) ni Display Port).

Sustituyendolas por:

  • HDMI (High-Definition Multimedia Interface, Interfaz Multimedia de Alta Definición).
  • Display Port (Esta conexión es “libre”, es decir su uso no implica el pago de royalties (Pago de patentes) como si ocurre con HDMI).

Ambas conexiones son digitales, soportan también Full HD 1080p (1.920 x 1.080 píxeles) y llevan el audio en formato digital; pero también tienen soporte HDCP y DRM (VGA no soporta ni HDCP ni DRM; DVI si puede soportar HDCP y DRM, de hecho existen cables DVI-HDMI, aunque en ambos casos (VGA y DVI) no pueden llevar el audio por otro cable separado).

En esta imagen de una Ati – AMD Radeon HD5450 se puede apreciar:

Hacer click en la imagen para ampliar

  • Un puerto VGA de color azul (Lateral izquierdo).
  • Un puerto DVI de color blanco (Lateral derecho).
  • Un puerto Display Port en el centro (No parece que sea HDMI).

Se puede encontrar más información en:

USB 3.0: El próximo estándar en transferencia de datos para dispositivos informáticos


Si ya USB (Universal Serial Bus, Bus Universal en Serie, también conocido como CUS: Conductor Universal en Serie) en su versión 2.0 nos podía parecer relativamente rápido, ya que USB 2.0 soporta hasta 480 Mbps, unos 60 MB/Seg aunque generalmente los dispositivos de alta velocidad (Ej: Memorias flash de alto rendimiento y discos duros) suelen quedarse en unos 35 MB/Seg lo cual no es poco si se compara con otros puertos de menor velocidad como son:

  • USB 1.1 (Sporta hasta 12 Mbps, aproximadamente 1,5 MB/Seg).
  • Puerto Paralelo (LPT) y Serie (RS-232) que son más lentos que la primera generación de USB.

Hay que tener en cuenta que los puertos USB se pueden clasificar según su velocidad (Tasa de transferencia de dato) en:

  • Low Speed (USB 1.0): Soporta hasta 1,5 Mbps (Unos 183 KB/Seg) prácticamente no se popularizo porque al poco tiempo salió la revisión USB 1.1 que soportba hasta 12 Mbps.
  • USB Full Speed (USB 1.1): Soporta hasta 12 Mbps (Unos 1,43 MB/Seg) fue el máx extendido hasta la aparición de USB 2.0 que soportaba hasta 480 Mbps.
  • USB High Speed (USB 2.0): Soporta hasta 480 Mbps (Unos 60 MB/Seg) es el estándar actual, al menos hasta que USB 3.0 se comercialice de forma masiva.
  • USB Super Speed (USB 3.0): Soporta hasta 4.800 Mbps (Unos 4,8 Gbps, aproximadamente unos 572 MB/Seg).

El aumento de velocidad de USB 3.0 se consigue mediante el uso de una mayor cantidad de lineas de datos, por lo que el tráfico es bidireccional, este aumento de lineas implica que el cable USB 3.0 es más grueso y por tanto más rígido. Así mismo los dispositivos USB 3.0 serán retrocompatibles con USB 2.0 aunque lógicamente perdiendo rendimiento (Al igual que ocurría con los dispositivos USB 2.0 conectados a un puerto USB 1.1).

De todas formas actualmente USB 3.0 no está implementado de forma masiva (Casi ninguna placa base trae puertos USB 3.0 y en muchos casos es necesario comprar una controladora USB 3.0 en formato PCIe o Express Card porque el bus PCI (Soporta hasta 133 MB/Seg) y PCMCIA  limitaría el ancho de banda disponible para los dispositivos conectados por USB 3.0) en parte porque los productos basados en estas nuevas controladoras actualmente son algo caros, y por otro lado actualmente existen otros conectores bastante más rápidos que USB 2.0 (Hasta 480 Mbps, unos 60 MB/Seg) como son:

  • Firewire800/IEEE 1394b que soporta hasta 800 Mbps (Unos 100 MB/Seg). En esta entrada del Blog hay más información.
  • eSATA (external Serial ATA) que soporta hasta 3.000 Mbps (Unos 300 MB/Seg) si se utiliza SATA300/SATA2 o bien hasta 1.500 Mbps (Unos 150 MB/Seg) si se usa SATA150, además el próximo estándar será SATA600 que llegara hasta los 6.000 Mbps (Unos 600 MB/Seg). En esta entrada del Blog hay más información.

Se puede encontrar más información en:

Tipos de instalaciones de software (Programas)


El Software (Programas) independientemente del tipo que sea:

  • Sistema operativo (Ej: Windows, Linux,…).
  • Drivers (Ej: Chipset de placa base, Tarjeta gráfica,…).
  • Programas (Suite Ofimaticas, Juegos, Antivirus,…)

Suelen admitir varios tipos de instalación bien a priori (Antes de instalarlos) o a posteriori (Una vez ya instalados), lógicamente las instalaciones a priori son mejores ya que sólo instalan lo que necesitamos y no es necesario desinstalar software ya instalado (El cual una vez desinstalado suele dejar archivos y claves en el registro del Sistema Operativo), entre los tipos de instalaciones de software más comunes están:

  • Mínima: Instala los archivos mínimos que se necesitan para poder ejecutar la aplicación, su mayor ventaja es que ocupa poco espacio en disco duro (Actualmente con la capacidad de los discos duros no tiene mucho sentido utilizar este tipo de instalación salvo alguna excepción como por ejemplo los Juegos que en los más actuales pueden ocupar varios gigabytes de espacio), sin embargo tiene una desventaja bastante clara si necesitamos utilizar alguna función que este en el disco del Software el programa nos pedira dicho disco para poder usar dicha función con lo cual si es un programa que utilizamos asíduamente necesitaríamos tener el CD de instalación a mano por si lo pide.
  • Típica: Instala la mayoría de archivos que se necesitan para poder ejecutar la aplicación, ocupa más espacio que la anterior pero normalmente no requiere el CD de instalación salvo que se utilice alguna función que no este instalada por defecto.
  • Completa (También denominada Full): Instala todos (o al menos la gran mayoría) de archivos que se necesitan para poder ejecutar la aplicación, ocupa más espacio que las anteriores pero normalmente no requiere el CD de instalación salvo que se utilice alguna función que no este instalada por defecto (Una excepción suelen ser los juegos de ordenador/PC que aunque se haga una instalación completa suelen requerir el CD/DVD del Juego en cuestión).
  • Personalizada (A veces también denominada Avanzada  o Custom): Permite al usuario elegir los programas que se instalaran, con diferencia es la mejor opción ya que permite al usuario elegir las aplicaciones que necesita realmente.

Televisiones LED ¿O Cómo dejar una televisión de Plasma/LCD “anticuada”?


TV_LED

Hasta hace poco tiempo las televisiones LCD y Plasma eran el no va más en tecnología dejando a los vetustos televisores de tubo (CRT) como modelos del pasado, ahora la historia se “repite” pero esta vez con televisiones LED que son mucho más finas que las LCD/Plasma.

Los televisores LED tienen varias ventajas frente a los LCD/Plasma:

  • Menor grosor, algunos modelos LED TV actuales tienen unos 29,9 mm (casi 3 cm).
  • Mayor calidad de imagen.
  • Todos los televisores LED son Full HD o 1080p (1.920 x 1.080 pixeles), en esta entrada se comenta la diferencia entre HD Ready ó 720p (1366 x 768 píxeles) y Full HD o 1080p (1920 x 1080 píxeles).
  • Menor consumo eléctrico.

Aunque también tienen una desventaja, el precio ya que una televisión LED como la Samsung LED Crystal TV Serie 6000 de:

  • 32″ ronda los 1.000 – 1.200 €
  • 40″ ronda los 1.500 – 1.600 €
  • 46″ ronda los 2.000 €

Los principales fabricantes de televisiones: Samsung, LG, Philips, Sony,… lanzaran sus modelos LED TV en breve, por lo que es de esperar que las “antiguas” televisiones LCD/Plasma bajen algo más de precio en un futuro próximo.

Se puede encontrar más información en:

Guía para comprar una televisión plana (LCD o Plasma)


Independientemente del tipo de televisión que elijamos (LCD o Plasma, comentadas en esta entrada: Televisiones planas ¿LCD o Plasma?) hay ciertos factores a tener en cuenta a la hora de elegir una, entre ellos:

La resolución, que puede ser:  HD Ready 720p (1.280×720 píxeles), o Full HD  (1.920×1.080 píxeles), Actualmente Full HD se denomina HD Ready 1080p, como se comenta en esta entrada: HD Ready vs. Full HD (Ahora denominada HD Ready 1080p). La elección de una resolución u otra depende de:

  1. La distancia a la que vamos a ver la televisión (Esta relacionada con la resolución), en Deaparatos, Foro El Septimo Arte y La Dosis Diaria, se puede encontrar algún ejemplo para calcular la distancia y la resolución adeacuada.
  2. El tamaño de la televisión (Diagonal o pulgadas), según comentan en Que Sabes de aunque no existe una regla para calcular la diagonal recomendada en función de la distancia, sin embargo si comentan que FullHD se hace más visible en pantallas de 37″ o más (Aunque también depende de la distancia de visionado).
  3. El contenido que se va a visualizar en la televisión, por ejemplo si vamos a ver películas en formato DVD (720 x 576 pixeles en PAL, 720 x 480 píxeles en NTSC) o contenido audiovisual con resoluciones similares (ej: TDT, Consolas como la PS2/Xbox,…) con una televisión HDReady (1.280 x 720 píxeles) sería suficiente; por el contrario si pensamos reproducir contenido en Alta Definicion como por ejemplo discos Blu Ray/HD-DVD o visualizar contenidos en resoluciones similares (ej: Consolas como Play Station3 (PS3) o Xbox360) seguramente saquemos mayor partido a una televisión FullHD 1080p (1.920 x 1.080 píxeles) porque el contenido HD suele ser 1.080p.

De todas formas es posible que actualmente no tenga mucho sentido comprar una televisión LCD HD Ready 720p (1.280×720 píxeles) ya que actualmente los LCD Full HD 1080p (1.920×1.080 píxeles) han bajado bastante de precio, y una televisión por regla general suele ser una compra a largo plazo, para varios años.

El tipo de panel LCD (En esta entrada: Paneles LCD ¿TN, IPS y VA? hay más información sobre los tipos de paneles), que puede ser:

  • TN (Twisted Nematic) + FILM: Son los paneles más antiguos y asequibles, tienen muy buen tiempo de respuesta, pero su calidad de imagen (presentan bastante desviación cromática, tienen una profundidad de color de 6 Bits, representando 270.000 colores, aunque los 2 bits que faltan para tener una gama de 16,2 millones de colores se consiguen por interpolación) y ángulos de visión en los extremos (laterales o verticales) son bastante malos distorsionando la imagen. Destacan en juegos y la reproducción de peliculas, ya que no tiene Ghosting (Imagen fantasma) debido a su tiempo de respuesta de muy bajo, de unos pocos milisegundos (ms)… Actualmente son los más habituales y también los más asequibles.
  • IPS (In-Plane Switching, Conmutación En Plano): Es una tecnología que apareció en 1.996 de la mano de Hitachi son más caros que los otros paneles (TN y VA), pero a cambio consiguen mayor fidelidad cromática (apenas tienen desviacíon cromática, tienen una profundidad de color de 8 Bits, representando 16,7 millones de colores, aunque existen modelos de hasta 10 bits), buenos ángulos de visión y contraste del color negro, pero tienen un tiempo de respuesta algo peor que los TN y VA, son más caros que los paneles TN y VA, suelen utilizarse para edición fotográfica.
  • VA (Vertical Alignment,  Alineación Vertical): Fue desarrollada en 1.998 por Fujitsu como una opción intermedia entre los paneles TN y los IPS. Los paneles VA tienen una leve desviación cromática (tienen una profundidad de color de 8 Bits, representano 16,7 millones de colores), un tiempo de respuesta relativamente bajo (más cercano a los TN), un contraste alto (similar a los TN), aunque son más caros que los TN pero más asequibles que los IPS, suelen utilizarse en edición fotográfica, aunque los IPS para esta tarea son mejor opción.

El tiempo de respuesta: A menor tiempo de respuesta menor posibilidad de Ghosting (Imagen Fantasma o “Estelas”), se mide en milisegundos (ms). Los monitores actuales suelen estar entre 2 y 5 ms, aunque hay que tener en cuenta que existen diferentes tiempos de respuesta:

  • ISO ( White to Black, De Blanco a Negro): Suele tardarse algo más de tiempo y debería ser el “estándar”.
  • GtG (Grey to Grey, De Gris a Gris): Suelen usarlos muchos fabricantes porque es más “rápido” que el ISO (Un LCD tarda más en pasar el color de los píxel de Blanco a Negro, que de Gris a Gris).

Actualmente es raro que se de el efecto de Ghosting (Imagen Fantasma o “Estelas”), aunque cuando aparecieron los primeros LCD/TFT si que se podía apreciar en algunos modelos.

Contraste: A mayor contraste mayor calidad de imagen entre los colores/tonos blanco y negro, aunque actualmente muchos modelos llevan contraste dinámico que no es un constraste real, siendo el contraste real muy inferior normalmente al dinámico.

Brillo, Luminancia o Luminosidad (cd/m2): Se mide en candelas por metro cuadrado, a mayor número, mayor luminosidad, por ejemplo un LCD con 300 cd/m2 tiene menos luminosidad que uno con 400 cd/m2.

TDT Integrado (En esta entrada hay más información sobre la tecnología TDT: TDT (Televisión Digital Terrestre) y HDTV (Televisión de Alta Definición) en España), puede un TDT convencional para recibir la señal actual, o bien un TDT compatible con HDTV 1080p, este último es compatible con señal de television Full HD que será la generación siguiente al TDT actual.

Conexiones de Audio y Video (En estas dos entradas (Conexiones de vídeo más frecuentes y Conexiones de audio más frecuentes) hay más información), aunque a modo de resumen se puede decir que las televisiones actuales suelen llevar:

  • Video compuesto (RCA) o S-Video: Actualmente es poco frecuente que una televisión LCD lleve esta conexión ya que es algo antigua, y esta siendo sustituida por el Euroconector/SCSART.
  • Varios Euroconectores/SCART.: Reciben la señal de video y audio en formato analógico por lo que no son compatibles con HD Ready o superior. Actualmente han sido sustituidos por los conectores HDMI (High-Definition Multi-media Interface, Interfaz Multimedia de Alta Definición) que se implementan en muchos DVDs, Consolas (Ej: PS3 o Xbox360) y Reproductores de Alta Definicion (Blu Ray o HD-DVD).
  • Alguna conexion de Video por componentes: Reciben la señal de video (No admite audio) en formato analógico por canales separados, pueden reproducir contenido en alta definición pero al no incluir el sistema de protección HDCP (Dynamic Host Configuration Protocol, Protocolo Configuración Dinámica de Anfitrión) tienen una resolución inferior.
  • Algún conector VGA (D-Sub15) o Entrada PC: Recibe la señal de vídeo (No admite audio) en analógico, aunque es compatible con altas resoluciones como HD Ready o FullHD, no implementa tecnología HDCP por lo que no puede reproducirlas.
  • Varios conectores HDMI (High-Definition Multi-media Interface, Interfaz Multimedia de Alta Definición): Reciben la señal de video y audio en formato digital encriptado (Usan tecnología DHCP) pueden reproducir contenido HD Ready o superior. En principio cuanto mayor sea el número de conectores HDMI mejor ya que de esta forma nos ahorramos tener que utilizar multiplicadores de puertos HDMI ya que este puerto será el futuro estándar en Audio/Video para las televisiones LCD y los dispositivos (DVDs, Blu Ray, Consolas,…) que conectemos a ellas. Hay que tener en cuenta que las tarjetas gráficas de ordenador actuales tienen conexión HDMI o bien utilizan un conector DVI compatible con HDCP.
  • Una conexión Minijack estéreo de 3,5 mm que funciona como entrada de audio para recibir la señal de audio analógico.
  • Dos conexiones RCA (Blanca y Roja) que funciona como entrada de audio para recibir la señal de audio analógico.
  • Entrada para auriculares.
  • Además de las conexiones anteriores algunos modelos pueden tener salidas de audio para llevar el sonido desde la televisión a otro dispositivo (ej: Una cadena musical, Un Home Cinema,…).

Otras tecnologías:

  • Tecnología de procesado de imagen: Es un software (Programa) que aplica los filtros de imagen, cada fabricante suele tener el suyo propio, por ejemplo:
    • Pixel Plus en Philips
    • Bravia Engine en Sony.
    • XD Engine en LG.
    • DNIe en Samsung.
    • TruD en Sharp.

Hay que tener en cuenta que no todos los procesadores de imagen obtienen los mismos resultados, como comentan en este artículo de El Mundo.

  • HDMI CEC (Consumer Electronics Control): Es una tecnología de comunicación bidereccional mediante el conector HDMI, que puede comunicarse los dispositivos  que haya conectados al televisor, utilizando un único mando, cada fabricante utiliza un nombre propio para esta tecnología (En Peliculas FullHD se puede encontrar más información), por ejemplo:
    • Bravia Sync Theatre en Sony.
    • Anynet+ en Samsung.
    • Bravia Link y EZsync en Panasonic.
    • SimpLink en LG.
    • HDMI Control en Pioneer.
  • Reproducción de imágenes a 60, 50 y 24 Hz (o sus multiplos como algunos televisores de 100 ó 120 Hz)
  • Ambilight de Philips: Es un sistema de retroiluminación utilizado por Philips en la línea de sus televisores planos de plasma y LCD; Ambilight permite regular el contraste dentro de la habitación (Información de Wikipedia), en este video de Youtube se puede ver una demostración de esta tecnología de Philips:

Otra opción puede ser comprar un Proyector (Comentados en esta entrada: ¿Proyector o Pantalla plana (Plasma o LCD)?) que tenga la resolución y conexiones que necesitemos.

Se puede encontrar más información sobre Guías y Consejos para comprar un LCD en:

¿Cuanto vale tener un ordenador encendido?


Hace tiempo comente en estas dos entradas:

El tema del consumo de los equipos informáticos así como las características de las fuentes de alimentación (No sólo cuentan los “Watios” sino también sus Amperios, entre otras características, como se puede ver en esta entrada: Guía para comprar una fuente de alimentación de ordenador).

En la web PC Silencioso han hecho un estudio sobre el consumo de varios equipos:

  • PC de oficina con gráfica integrada, utilizado como HTPC, PC de oficina, o PC para descargas: Athlon X2 4800+ con una placa con gráfica integrada
  • PC de oficina, con la misma funcionalidad que el anterior, pero con una gráfica de poca potencia que permita jugar a juegos ligeros: Dual-Core E5400 + Radeon HD4670
  • PC de juegos ligero (de hace unos dos años): E6600 + HD3870
  • PC de juegos 1 (ejemplo de este artículo): E8600 + HD4850
  • PC de juegos 2 (ejemplo de este artículo): Core i7-920 + GTX260 Extreme
  • PC de juegos 3 (ejemplo de este artículo): Core i7-920 + GTX295

En diferentes situaciones:

  • Ordenador encendido todo el día (24/7), en tareas que no requieran mucho consumo (Descargas por ejemplo)
  • Ordenador utilizado para jugar 4 horas al día y 4 horas para trabajo de oficina, internet, descargas, etc.
  • Ordenador utilizado para jugar 4 horas al día y 8 horas para trabajo de oficina, internet, descargas, etc.
  • Ordenador utilizado al máximo durante todo el día (Por ejemplo para algunos proyectos de computación distribuida en los que se utiliza el 100% de la CPU y el 100% de la GPU)

Sacando una conclusion bastante clara a mayor potencia (CPU y Gráfica, entre otros), mayor consumo y por lo tanto mayor coste energético y económico, por ejemplo si tenemos:

  • Un Athlon X2 4800+ con grafica integrada (Como tienen muchos HTPC) en Idle (Sin carga) tiene un consumo de unos 55w, lo que se “traduce” en unos 5,43 €/24h.
  • Un Core 2 Duo E8600 con una Ati 4850 en Idle (Sin carga) tiene un consumo de unos 110w, lo que se traduce en unos 10,86 €/24h.
  • Un Core i7 920 con una nVidia GeForce GTX295 en Idle (Sin carga) tiene un consumo de unos 180w, lo que se traduce en unos 17,77 €/24h.

Actualmente muchos de los equipos informáticos se pasan mucho tiempo en Idle (ej: Uso Ofimatico, Internet, Descargas, Reproduccion de audio y video,…), mientras que el tiempo que pasan en Full Load (ej: Ejecutando juegos 3D de PC, Ejecutando programas 3D, Reproduciendo video HD, …) suele ser mucho menor.