Eliminar Toolbar (Barra de herramientas) adicionales del Navegador Web (Browser)


En muchas ocasiones al instalar un programa (En muchos casos gratuito o freeware), este no “invita” por defecto (Por norma general las casillas de instalación vienen activadas) a instalar una barra de herramientas para nuestro navegador (Generalmente se instalan en Internet Explorer, aunque algunas pueden instalarse en Mozilla Firefox), personalmente considero que la utilidad de estas toolbar (Barras de herramientas) son poco útiles para el usuario por varias razones:

  1. Consumen recursos de hardware (Ej: Memoria RAM) que podrían dedicarse a otros programas (En caso de abrir una ventana nueva del navegador, este tiene que cargar las toolbar correspondiente de nuevo).
  2. Reducen el tamaño de la ventana de navegación ya que la barra ocupa un espacio en el menú del navegador.
  3. Generalmente apenas se utilizan, por lo que suelen estar de “adorno”.
  4. Su utilidad es dudosa, incluso algunas Toolbar son reconocidas como malware por algunos antivirus.

Internet Explorer con 13 toolbar (Pulsar para ampliar la imagen)

Para solucionar esto se puede optar por:

  • Deshabilitar la carga de la toolbar en el navegador (Esto no desinstala la barra, solamente evita que se cargue al arrancar el navegador).
  • Desinstalar la toolbar bien a través de las opciones del navegador si es posible, o desde el menu de “Agregar o quitar programas”, el problema es que no todas las toolbar se pueden desinstalar de esta forma.
  • Utilizar un programa especifico que desinstale por completo la toolbar, entre los que se encuentran: Multi-Toolbar Remover (Es una versión portable, sin instalación), Toolbar Uninstaller o Toolbarcleaner.

Se pueden encontrar varios tutoriales en:

Anuncios

Herramientas básicas para reparar un ordenador


La reparación de equipos informáticos no suele requerir herramientas complicadas y/o caras (Aunque si requieren ciertos conocimientos técnicos), en Configurar equipos citan algunas entre ellas:

  • Pulsera antiestática (Es aconsejable aunque no obligatoria).
  • Destornilladores de estrella (También llamados Philips) de varias medidas (También puede ser aconsejable tener alguno que otro Parker (También llamados Planos) aunque no suelen usarse mucho ya que casi todos los tornillos que se utilizan en informática suelen ser de estrella).
  • Varios tipos de alicates.
  • Pinzas de electrónica.
  • Tester o Polímetro (En esta entrada del Blog hay más información sobre la comprobación de voltajes).
  • Brocha o pincel.
  • Bote de aire comprimido.
  • Aspiradora portátil (Existen modelos con alimentación USB de 5v que si bien no tienen mucha potencia de aspiración si pueden ser “útiles” para la limpieza de componentes informáticos).
  • Pasta térmica (Preferentemente de cierta calidad, ya que ayuda a reducir la temperatura de funcionamiento), muy útil si es necesario cambiar algún disipador.

Además de estas herramientas en Alt-TAB indican algunas herramientas más de utilidad como:

  • Memoria flash USB o Pendrive (Preferentemente de altas prestaciones), que pueden servir para:
    • Llevar un Sistema Operativo Booteable (Arrancable).
    • Tener programas de diagnóstico portables (Sin instalación).
    • Guardar archivos si la cantidad de espacio ocupada por los mismos es baja (Si el volumen de datos a copiar es muy grande es mejor opción usar un disco duro externo).
  • Adaptador de IDE/SATA a USB.
  • Placa de Red (RJ-45) a USB (Denominadas USB LAN).
  • Cables de prueba de diversos tipos (USB, Red, Teléfono,…).
  • Navaja suiza multiuso (Realmente es mejor tener destonilladores, pinzas y alicates independientes ya que las navajas multiusos no suelen ser de mucha calidad).
  • Gas Paralizante (Gas pimienta) según comenta el autor de la entrada es para evitar un posible robo por causa de los amigos de lo ajeno.

A esto bajo mi punto de vista personal habría que sumar:

  • Un disco duro externo IDE/SATA para almacenar copias de seguridad de datos (Back-Ups) temporalmente si el volumen de datos a copiar es muy grande y no entra en una memoria flash.
  • Tester de fuentes de alimentación.
  • Un adaptador PS/2 (Teclado y Ratón) a USB (Para equipos que tengan teclado y ratón PS/2 pero tengan los puertos averiados y/o el Sistema Operativo no reconozca el Teclado/Ratón conectado por USB).
  • Alcohol de farmacia de 96º, acetona o similar y algodón (Impregnado en alcohol o similar) se utiliza para quitar la pasta térmica en caso de desmontar un disipador.
  • El Software:
    • Distribución Linux (Ej: Ubuntu u Open Suse) en formato Live CD/Live DVD por si el sistema no arranca y es necesario salvar los datos.
    • Software de diagnóstico de componentes (RAM, Disco duro, Procesador, Tarjeta gráfica,…), en esta entrada del Blog hay más información.
    • Software de Benchmark de componentes (Ej: Gráfica, Procesador,…) que en muchos casos cuando “estresan” el componente en cuestión y pueden arrojar fallos dando “pistas” de un posible error de hardware y no de software, en esta entrada del Blog hay más información.

Los componentes informáticos (Memoria flash, Disco duro, Tester de fuentes,…) se pueden encontrar en tiendas de informática especializada, mientras que las herramientas (Destornilladores, Alicantes,…) se pueden encontrar en cualquier ferretería y/o gran superficie.

Termómetro infrarrojo: Scythe Kama Thermo


Hace tiempo comente el tema de los polímetros en esta entrada del Blog como herramienta para comprobar voltajes en equipos informáticos. Otra herramienta muy útil en el entorno informático son los termómetros, sirven para comprobabar la temperatura a la que esta funcionando una determinada pieza, por ejemplo:

  • Procesador (CPU).
  • Gráfica (GPU).
  • Disco duro (HDD).

Ya que las piezas electrónicas, tienen un rango de temperatura operativa dentro de los cuales son funcionales y que no es conveniente sobrepasar.

Normalmente se puede comprobar la temperatura de algunas piezas (Ej: Procesador, Gráfica y Disco duro) mediante algún “software” de monitorización como por ejemplo:

  • BIOS suele mostrar la temperatura de la CPU y System (Chipset).
  • Software (Programa que lee los datos que proporcionan los sensores a la BIOS), este software puede ser:
    • Propietario de los fabricantes de placas base como: Asus Probe, Gigabyte Easy Tune,…
    • Genérico de monitorización de temperaturas como por ejemplo:  Mother Board Monitor (MBM), Speed Fan,…

Para monitorizar temperaturas de tarjetas gráficas (GPU) y Discos duros existe:

  • Software (Programas) propietario de los fabricantes de tarjetas gráficas (Aunque creo que también existen programas genéricos).
  • Utilidades SMART (Self Monitoring Analysis and Reporting Technology) que monitorizan la temperatura del disco duro o discos duros instalados entre otros parámetros siempre y cuando sean compatibles con la tecnología SMART (En esta entrada hay más información sobre ella).

Sin embargo es posible que el programa no detecte correctamente la temperatura dando una información errónea debido a un fallo en el sensor térmico, esto suele pasar por ejemplo en algunas placas base que puede medir temperatura de más o de menos, para solucionar este “problema” y acercarse más a la temperatura real de las piezas existen varios sistemas:

  • La sondas térmicas, en Hard-H2o analizaron hace tiempo la Compunurse y la Senfu permiten monitorizar a temperatura de un componente.
  • Un termómetro infrarrojo como el Scythe Kama Thermo (Analizado también en Hard-H2o) que nos permite conocer la temperatura de funcionamiento aproximada de la pieza que se comprueba.

Ambas herramientas pueden ser útiles para realizar comprobaciones sobre el funcionamiento de cualquier pieza electrónica para descartar posible problemas de estabilidad debido a las altas temperaturas de funcionamiento.

¿Cómo testear una fuente de alimentación de ordenador?


En muchas ocasiones los ordenadores presentan problemas de alimentación como:

  • Bloqueos.
  • Reinicios.
  • Apagados.

Que pueden ser debidos entre otras causas a averías en la fuente de alimentación, para comprobar una fuente de alimentación de ordenador se pueden usar diversos métodos:

  • El más sencillo sería revisar en BIOS los voltajes que da la fuente (Normalmente se encuentra en la opción PC Heath Status o Hardware Monitor), normalmente el margen de error admisible es de un 5% como máximo  (Lógicamente cuanto más próximos esten los voltajes al valor de referencia mayor estabilidad tendrá en sistema), es decir que para los railes de:
    • +3,3 oscilaria entre 3,13 y 3,46v para el 5% de diferencia (Una diferencia del 10% supondría entre 2,97 y 3,63v).
    • +5v oscilaria entre 4,75 y 5,25v para el 5% de diferencia (Una diferencia del 10% supondría entre 4,5 y 5,5v).
    • +12v oscilaria entre 11,4 y 12,6v para el 5% de diferencia (Una diferencia del 10% supondría entre 10,8 y 13,2).
    • -5v oscilaria entre -4,75 y -5,25v para el 5% de diferencia (Una diferencia del 10% supondría entre -4,5 y -5,5v).
    • -12v oscilaria entre -11,4 y -12,6v para el 5% de diferencia (Una diferencia del 10% supondría entre -10,8 y -13,2).
    • +5VSB oscilaria entre 4,75 y 5,25v para el 5% de diferencia (Una diferencia del 10% supondría entre 4,5 y 5,5v).
PC Health Status BIOS (Pulsar para ampliar)

PC Health Status BIOS (Pulsar para ampliar)

Actualmente los equipos informáticos, utilizan más la línea de +12v por lo que es importante que tengan bastante amperios, antiguamente las líneas con más amperios erán las de  +3,3v y +5v, teniendo unas líneas de +12v relativamente “pobres” (Aunque suficientes para la época) en comparación con las primeras, como es el caso de la Fortron FPS 400-60 PFN de 400w (Documento en PDF) que tiene estos valores:

  • +3,3v -> 28A
  • +5v -> 40A
  • +12v -> 15A
  • +5Vsb -> 2A
  • -5v -> 0,3A
  • -12v -> 0,8A

Como se puede ver la línea de +12v “sólo” tiene 15A, mientras que la de +3,3v tiene 28A y la de +5v llega a 40A, cuando por ejemplo una fuente actual como la Gigabyte SuperB de 460w tiene por ejemplo dos raíles de +12v con casi 15A cada uno (La suma de estos no serían 29A ya que estos no se suman aritméticamente, ya que se pierden algunos al efectuar la suma de los amperios) estos valores:

  • +3,3v -> 30A
  • +5v -> 30A
  • +12v1 -> 14A
  • +12v2 -> 15A
  • +5Vsb -> 2A
  • -12v -> 0,8A

o una Corsair VX450 de 450w (Tiene 33A en rail de +12v)  arroja estos valores:

  • +3,3v -> 20A
  • +5v -> 20A
  • +12v -> 33A
  • +5Vsb -> 3A
  • -12v -> 0,8A

El problema es que este tipo de comprobación (Revisar el PC Health Status de la BIOS) sólamente vemos los valores que aparecen en ella, pero esta comprobación sería de voltaje sin carga (En Idle), porque en BIOS el equipo apenas consume watios y por lo tanto puede parece que la fuente funciona correctamente cuando no es así.

  • El siguiente método sería mediante algún programa que monitorice voltajes bien del fabricante de la placa base (Ej: Asus PC Probe, Gigabyte Easy Tune,…) o genérico (Ej: Motherd Board Monitor, Speed Fan, Everest,…) este sistema nos serviría para comprobar la fuente tanto sin carga (En Idle) cuando estamos en el escritorio de Windows sin hacer nada, como a plena carga (En Full Load), para esto último bastaría con ejecutar alguna aplicación que cargue el equipo (Ej: Orthos o 3DMark entre otras).
MotherBoard Monitor (Pulsar para ampliar)

MotherBoard Monitor (Pulsar para ampliar)

Este sistema puede darnos una idea de la estabilidad de la fuente y saber si se puede considerar fiable.

Lógicamente los si los voltajes que aparecen en BIOS y/o los programas de monitorización de Rpms, Temperaturas, Voltajes,… Son anómalos (Difieren del 5% de tolerancia) habría que llevar a cabo una comprobación más exaustiva con un tester (Testeador).

  • Para solucionar este problema están los tester (Testeadores):
Polímetro/Multímetro

Polímetro/Multímetro

En un principio con Polímetro/Multimétro (Puede ser analógico o digital) que pueda “leer” voltajes de corriente continua (DC) de hasta 12v o más sería suficiente, en este hilo del Foro de Noticias3D comentan como utilizarlo (Hay que tener en cuenta que para “encender” una fuente ATX sin enchufarla a la placa base hay que puentear el cable “verde” (Aunque puede ser de otro color) del conector ATX con uno de los cables negros (Masa), aunque en el mercado hay “puenteadores” prefabricado como este de Agalisa:

Arrancador Fuente ATX

Arrancador de Fuente ATX

Tester específicos para fuentes ATX (Suelen ser lo más práctico)  como:

  • Este  “genérico” analizado en Hard-h2o para fuentes ATX de 20 pines (Los modelos actuales tienen un conector ATX de 24 pines (20 + 4 Pines) y un Auxiliar de 4 + 4 Pines)
  • El Xilence (También analizado en Hard-H2o, en el Blog El rincón de Tolgaden comentan un modelo muy similar físicamente aunque no es de la misma marca), este tester dispone de una conexión: ATX 24 pines (20 + 4 Pines), Auxiliar de 8 pines (Aux. de 4 +4 Pines), Molex de 4 pines, Disquetera, Serial ATA y PCIe de 6 Pines (Actualmente los conectores PCIe suelen ser de 8 pines, 6 + 2 Pines). además cuenta con un Display LCD que muestra los valores de los voltajes típicos (+3,3v, +5v, +12v1, +12v2, -12v, +5VSB y PG (Power Good): Indica si la fuente de alimentación esta funcionando correctamente, si detecta un valor anómalo (Información de whirlpool.net en inglés). Si los valores son muy bajos o altos el tester emite un sonido de alerta,  en el display parpadea el valor erróneo y si es un fallo de voltaje lo “identifica” como HH (Si es más alto de lo normal) o LL (Si es más bajo de lo normal).

    Tester LCD

    Tester LCD