Integración tecnológica: Hasta que punto es “buena”


En lo personal considero que la integración tecnológica de dispositivos es buena especialmente en dispositivos portátiles (Ej: Portátiles, Tablet, Teléfonos móviles,…) donde la capacidad de conectividad y capacidad de ampliación del dispositivo en cuestión es menor que la que tienen los ordenadores de sobremesa;  un claro ejemplo en equipos de sobremesa actuales son losp procesadores (Actualmente integran entre otros elementos: Coprocesador matemático, Memoria cache o el controlador de memoria RAM) o las placas base (Motherboard o Mainboard) actuales que suelen llevar integrados de fabrica:

  • Varios conectores USB traseros y frontales (En algunos casos algunos de estos puertos pueden ser USB 3.0).
  • Varias conexiones Serial ATA (SATA), en algunos casos pueden tener algún puerto eSATA (eXternal Serial ATA) para conectar dispositivos de almacenamiento externo (Ej: Memoria Flash eSATA o Discos duros externos) ofreciendo un rendimiento similar al de un disco duro SATA interno.
  • 1 conexión LAN (Ethernet RJ-45) de 100 Mbps (En algunos casos pueden tener 1 ó 2 conexiones LAN Gigabit Ethernet de 1.000 Mbps).
  •  Una conexión IDE/ATA (Aunque esta en “extinción” porque ha sido sustuida por SATA).
  • Algunos modelos de gama media/alta suelen llevar puertos Firewire (IEEE1394 ó I.Link) que principalmente se utilizan para capturar vídeo desde una camara MiniDV o similar (Siempre y cuando esta disponga de dicha conexión).

Sin embargo algunas placas base de sobremesa también pueden tener integrados otros dispositivos como es el caso de una conexión Wifi o Bluetooth, como por ejemplo el caso de la Zotac H55 miniITX que lleva Wifi 11n (Aunque en este caso puede estar “justificado” porque placa base es de formato reducido (Menor incluso que MicroATX).

Zotac H55 Mini ITX

Básicamente la única ventaja que tiene la integración tecnológica en equipos de sobremesa (Ej: Ordenadores), es la eliminación de dispositivos que tiene el usuario sobre la mesa

Sin embargo bajo mi punto de vista la integración también tiene sus desventajas, entre ellas:

  • Los dispositivos integrados únicamente pueden utilizarse en el equipo que los tiene, si estos fuesen externos (Ej: Lectores de tarjetas, Conexión Wifi USB, Conexión Bluetooth (BT) USB,…) podrían compartirse con otros dispositivos compatibles aunque lógicamente no podrían usarse simultáneamente en dos equipos.
  • Deja los dispositivos  integrados obsoletos en el momento que aparecen nuevas revisiones (Siempre y cuando actualice los dispositivos) como por ejemplo es el caso de:
  • Lectores de Tarjetas de memoria (Los lectores más antiguos suelen tener problemas para “leer” tarjetas de memoria actuales de gran capacidad y/o modelos de reciente aparición).
  • Wifi 11g (Hasta 54 Mbps) y Wifi 11n (Hasta 300 Mbps).
  • Bluetooth 2.0 + EDR (Hasta 3 Mbps) y Bluetooth 3.0 + HS (Hasta 24 Mbps).

Otro ejemplo de integración en periféricos serían las impresoras multifunción que actualmente integran:

  • Impresora.
  • Escáner.
  • Fotocopiadora (Algunos modelos empresariales pueden llevar un ADF: Automatic Document Feeder, Alimentador Automático de Documentos).
  • Fax (En algunos modelos de gama media/alta).

Que pueden “ahorrar” espacio físico utilizando un único dispositivo para varias funciones, sin embargo en caso de que averíe alguna de esas funciones en caso de llevarlo a reparar perdemos el resto de funciones y por otra parte es posible que traiga más cuenta cambiar el dispositivo completo que repararlo.

Herramientas básicas para reparar un ordenador


La reparación de equipos informáticos no suele requerir herramientas complicadas y/o caras (Aunque si requieren ciertos conocimientos técnicos), en Configurar equipos citan algunas entre ellas:

  • Pulsera antiestática (Es aconsejable aunque no obligatoria).
  • Destornilladores de estrella (También llamados Philips) de varias medidas (También puede ser aconsejable tener alguno que otro Parker (También llamados Planos) aunque no suelen usarse mucho ya que casi todos los tornillos que se utilizan en informática suelen ser de estrella).
  • Varios tipos de alicates.
  • Pinzas de electrónica.
  • Tester o Polímetro (En esta entrada del Blog hay más información sobre la comprobación de voltajes).
  • Brocha o pincel.
  • Bote de aire comprimido.
  • Aspiradora portátil (Existen modelos con alimentación USB de 5v que si bien no tienen mucha potencia de aspiración si pueden ser “útiles” para la limpieza de componentes informáticos).
  • Pasta térmica (Preferentemente de cierta calidad, ya que ayuda a reducir la temperatura de funcionamiento), muy útil si es necesario cambiar algún disipador.

Además de estas herramientas en Alt-TAB indican algunas herramientas más de utilidad como:

  • Memoria flash USB o Pendrive (Preferentemente de altas prestaciones), que pueden servir para:
    • Llevar un Sistema Operativo Booteable (Arrancable).
    • Tener programas de diagnóstico portables (Sin instalación).
    • Guardar archivos si la cantidad de espacio ocupada por los mismos es baja (Si el volumen de datos a copiar es muy grande es mejor opción usar un disco duro externo).
  • Adaptador de IDE/SATA a USB.
  • Placa de Red (RJ-45) a USB (Denominadas USB LAN).
  • Cables de prueba de diversos tipos (USB, Red, Teléfono,…).
  • Navaja suiza multiuso (Realmente es mejor tener destonilladores, pinzas y alicates independientes ya que las navajas multiusos no suelen ser de mucha calidad).
  • Gas Paralizante (Gas pimienta) según comenta el autor de la entrada es para evitar un posible robo por causa de los amigos de lo ajeno.

A esto bajo mi punto de vista personal habría que sumar:

  • Un disco duro externo IDE/SATA para almacenar copias de seguridad de datos (Back-Ups) temporalmente si el volumen de datos a copiar es muy grande y no entra en una memoria flash.
  • Tester de fuentes de alimentación.
  • Un adaptador PS/2 (Teclado y Ratón) a USB (Para equipos que tengan teclado y ratón PS/2 pero tengan los puertos averiados y/o el Sistema Operativo no reconozca el Teclado/Ratón conectado por USB).
  • Alcohol de farmacia de 96º, acetona o similar y algodón (Impregnado en alcohol o similar) se utiliza para quitar la pasta térmica en caso de desmontar un disipador.
  • El Software:
    • Distribución Linux (Ej: Ubuntu u Open Suse) en formato Live CD/Live DVD por si el sistema no arranca y es necesario salvar los datos.
    • Software de diagnóstico de componentes (RAM, Disco duro, Procesador, Tarjeta gráfica,…), en esta entrada del Blog hay más información.
    • Software de Benchmark de componentes (Ej: Gráfica, Procesador,…) que en muchos casos cuando “estresan” el componente en cuestión y pueden arrojar fallos dando “pistas” de un posible error de hardware y no de software, en esta entrada del Blog hay más información.

Los componentes informáticos (Memoria flash, Disco duro, Tester de fuentes,…) se pueden encontrar en tiendas de informática especializada, mientras que las herramientas (Destornilladores, Alicantes,…) se pueden encontrar en cualquier ferretería y/o gran superficie.

¿Cuándo deja de ser útil un ordenador?


La respuesta a esta pregunta no es fácil ya que existen diversas razones para considerar un equipo informático de sobremesa (Ordenador de sobremesa o escritorio) como “obsoleto”, algunas de ellas pueden ser:

Escasa potencia en cuanto a recursos Hardware (Procesador/CPU, Tarjeta Gráfica/GPU, Memoria RAM, Capacidad de almacenamiento,…), para las nuevas tareas que desarrolla el usuario y que inicialmente no estaban previstas (Ej: Ejecución de programas/juegos 3D, Edición de video,…), esto en algunas ocasiones puede solucionarse con una actualización y/o ampliación de piezas pero en caso de ser muy costosas es mejor opción adquirir un equipo nuevo que probablemente tendrá mejores prestaciones que el equipo antiguo.

Inexistencia de recambios, o recambios muy costosos para el equipo en caso de tener que efectuar una ampliación/reparación, por ejemplo lo equipos AT (Advanced Technology) del año 98 y anteriores, son anteriores a los ATX (Advanced Technology Extended) actuales (Actualmente ha salido una nueva norma denominada BTX (Balanced Technology Extended), aunque parece que no ha terminado de cuajar en el mercado) utilizan piezas diferentes a los actuales, por ejemplo:

  • Sus fuentes de alimentación son AT, no ATX, encontrar una fuente AT nueva a estas alturas (En el año 2009) es imposible, como mucho se podría encontrar usada por lo que no podemos esperar la misma fiabilidad que una fuente nueva. En este video de de Youtube se puede ver la diferencia entre ambas fuentes de aimentación:
  • Sus placas base son AT (Al igual que sus fuentes) y sus conectores son diferentes al estandar ATX actual, en este video de Youtube se pueden ver las diferencias entre una placa base AT y otra ATX:
  • Los equipos AT utilizan teclados con conexión MiniDin y ratones con puerto Serie (RS-232) diferentes a los actuales PS/2 y USB, aunque en el mercado puede encontrarse adaptadores pero en muchos casos hay que recurrir a tiendas online con lo que el precio del adaptador sube bastante al tener que contar los portes.
  • El tipo de memoria RAM que utilizan los equipos AT (Por norma general suelen tener como mucho 32 MB de RAM) es de tipo SIMM (Single In-line Memory Module, Módulo Simple de Memoria en Línea), actualmente no se encuentran en el mercado por lo que habría que tirar de segunda mano si que se puede encontrar, los equipos actuales usan módulos DIMM (Dual In-line Memory Module, Módulo de Memoria en Linea Doble) que pueden ser: SDRAM, DDR, DDR2, DDR3.
  • Discos duros aunque usan el sistema de conexión IDE y pueden encontrarse discos duros IDE de poca capacidad (Entre 120 y 160 GB), pero tienen varias “pegas”:
    • El precio de los discos IDE es similar al de los discos Serial ATA (SATA) 150/300 actuales pero no así su capacidad, por ejemplo un disco IDE de 120 GB y 7.200 Rpms ronda los 60 €, sin embargo por unos 50 € podemos comprar un disco duro SATA300 de 500 GB y 7.200 Rpms.
    • La BIOS de un equipo AT al ser tan antigua seguramente no reconozca la capacidad total del disco duro, en consecuencia “perderemos” espacio, las BIOS de esa época probabablemente no tendrán un soporte para discos duros de más de 4 GB con suerte puede que llegen a los 8 GB, o como mucho a los 32 GB.
  • La tarjeta gráfica que utilizan suele ser de unos 4 MB como mucho (En muchos casos suelen ser de 2 MB) y su bus de conexión es PCI, raramente las placas AT disponen de conexión AGP.
  • No disponen de puertos USB por lo que si necesitamos este tipo de puertos necesitamos recurrir a una controladora USB por bus PCI, lo cual supone un aumento del coste del equipo.
  • No suelen disponer de Grabadora de CD/DVD, en su lugar suelen utilizar un Lector de CDs o como mucho un lector de DVDs, con lo cuál hacer copias de seguridad de los datos es poco viable.
  • Los sistemas operativos que utilizan suelen ser Windows 95 ó Windows 98/98SE (Win9x) frecuentemente, lo que supone tener que usar dispositivos (Impresoras, Escáner,Teclado, Ratón,…) acordes al sistema (Cualquier dispositivo que se instale en Windows 98/98SE por regla general necesita sus drivers correspondiente como en cualquier otro Sistema Operativo, sin embargo los sistemas operativos más actuales, ej: Windows XP y superiores no necesitan drivers para ciertos dispositivos como por ejemplo: Memorias Flash USB o discos duros USB lo cual facilita la conexión/desconexión de estos dispositivos de almacenamiento externo.

Hay que tener en cuenta que el tema de los recambios también afecta a los ordenadores ATX actuales, ya que actualmente hay generaciones de equipos diferentes con diferentes tipos de:

  • Placas base que varían en función del Socket del procesador:
    • Los Socket más actuales en Intel son: LGA1366 (Core i7), LGA1156 (Core i5) y LGA775 (Core 2 Duo/Quad y últimos Pentium 4).
    • Los Socket más actuales de AMD (Advanced Micro Devices) son: AM3, AM2+ y AM2
  • Memoria RAM: Puede ser SDRAM (Actualmente no se utiliza en equipos nuevos), DDR (Actualmente no se utiliza en equipos nuevos), DDR2 (En un futuro próximo no se utilizará en equipos nuevos), DDR3.
  • Tarjeta Gráficas: AGP (Actualmente no se utiliza en equipo nuevos) o PCI Express (PCIe).
  • Conexiones de dispositivos de almacenamiento: IDE (Actualmente la tendencia es no utilizarlo en equipos nuevos) o Serial ATA (SATA).
Por lo que en equipos muy antiguos (Ej: Pentium III, Athlon XP, Primeros Pentium 4,…) pueden darse casos similares a los de los equipos AT comentados en cuanto a tema de recambios, por lo que posiblemente en algunos casos quizas sea mejor cambiar el equipo directamente por uno nuevo si la reparación supone un gran coste.

Estas mismas razones pueden aplicarse a equipos portátiles con la diferencia de que un equipo portátil suele tener menos potencia en recursos Hardware (Procesador/CPU, Tarjeta Gráfica/GPU, Almacenamiento,…) que un equipo de sobremesa equivalente. Además dos averías que pueden hacernos cambiar de equipo portátil son:

  • Sustitución de la placa base y/o tarjeta gráfica (Suele estar integrada en la placa base aunque esta sea dedicada).
  • Sustitución del monitor.

Debido a su alto coste de reparación, ya que actualmente se pueden encontrar equipos portátiles  de bajo coste con pantallas de 15″, por unos 500 € aproximadamente.

Se puede encontrar más información en Wikipedia:

Century 3in1 Firewire Connector: Multiadaptador IDE/SATA @ USB/Firewire


Century

Hace tiempo comente la existencia de las Dock Station (En esta entrada hay más información sobre ellas), Century ha comercializado en Japón un adaptador (CRAISFU2) que dispone de varias conexiones de datos:

  • IDE de 3,5″ (Sobremesa) y 2,5″ (Portátil).
  • SATA (Sobremesa y Portátil).

Hasta aquí nada nuevo, ya que los dispositivos que hay en el mercado actual también permiten dichas conexiones, sin embargo la “novedad” esta en la conexión de datos que se puede hacer mediante:

  • USB 2.0 (Hasta 480 Mbps, unos 60 MB/seg) a través de pun puerto miniUSB.
  • Firewire/IEEE 1394a (Hasta 400 Mbps, unos 50 MB/seg).

ContenidoCentury

Además el dispositivo incluye varios cables de alimentación y de datos para poder conectar los dispositivos:

  • 1 Cable Firewire de 6 pines en ambos extremos (Tamaño “grande”, existe otros cables Firewire con menor número de pines).
  • 1 Cable USB 2.0 a MiniUSB.
  • 1 Cable con dos puertos USB 2.0 a Mini USB (Para alimentar discos duros de portátil sin alimentación).
  • 1 Adaptador SATA (Conector de datos y de alimentación que proporciona un conector SATA de datos y un Molex de 4 pines para dar alimentación.
  • 1 Transformador con un conector Molex de 4 pines para dar alimentación a los dispositivos.
  • 1 Cable de corriente para el transformador.

Es compatible con los siguientes Sistemas Operativos:

  • Macintosh (MAC OS 10.4 o superior).
  • Windows 2000 / XP / VISTA / 7.

El precio del dispositivo es de unos 7.280 yenes (Unos 54,60 € al cambio) según los datos de Geek Stuuf 4U.

Actualmente muchos de los dispositivos de este tipo que hay en el mercado sólo disponen de conexión IDE@USB o IDE/SATA@USB, pero no pueden conectarse por Firewire que es una conexión algo más rapida que USB 2.0, ya que el estándar Firewire nació como solución para editar video (Muchas camaras miniDV para volcar el video utilizan un puerto Firewire), mientras que el puerto USB es para un uso “general”.

Fuentes: Engadget y Tecnología21

Guía para comprar una Placa Base (Motherboard o Mainboard)


La placa base (Motherboard o Mainboard) es el soporte básico de un ordenador de ella depende varios factores como por ejemplo:

  • El procesador (CPU) que podemos utilizar en función del Socket que utilice, por ejemplo si la placa base es para Socket 775 de Intel, sólo podremos utilizar procesadores de ese Socket y ese fabricante.
  • El tipo de memoria RAM que soporta, por ejemplo una placa base que soporta DDR2 no soporta DDR3, aunque en el mercado existen algunas placas base con soporte de memoria “mixto” (Ej: DDR2 y DDR3) aunque no pueden utilizarse de forma simultanea, y además suelen tener menor capacidad de memoria RAM, es decir si una placa con soporte para DDR2 ó DDR3 tiene 4 zócalos, una placa base con soporte “mixto” aunque tiene 4 zocalos, seguramente tendrá 2 zócalos DDR2 y otros 2 zócalos DDR3.
  • El tipo de tarjeta gráfica que soporta, ya que hace tiempo había placas base con puerto AGP y otras con puerto PCI Express (PCIe), actualmente el estándar actual es PCI Express (PCIe)
  • El número de dispositivos de almacenamiento interno y su tipo (IDE, SATA, SCSI o SAS) que podemos conectar a la placa base, algunos modelos de gama alta incluyen controladoras adicionales que aumentan el número de dispositivos.
  • El sistema de refrigeración de los componentes (Northbridge, Southbridge, Zona VRM (Voltage Regulator Module, Módulo Regulador de Voltaje) y Chipset auxiliares), en los modelos de gama baja suele ser pasiva (Utilizan disipadores (Heatsink/Heat Sink) de aluminio o cobre), o bien utilizan un disipador activo (con ventilador) que a la larga supone una fuente de ruido ya que son ventiladores pequeños que giran a altas Rpms; mientras que en los modelos de media y alta llevan sistemas de refrigeración pasivos con heat pipes que mejoran la disipación de calor y no generan ruido, incluso algunos modelos de gama alta vienen preparados para adaptarles un kit de refrigeración líquida a los disipadores y mejorar aún más su rendimiento.
  • Extras que tiene la placa base, algunos modelos de gama media y alta incluyen por ejemplo:
    • Switch (Botones) para:
      • Encender/Apagar la placa blase (Esto también se puede hacer puenteando los pines adecuados).
      • Hacer un Reset (Esto también se puede hacer puenteando los pines adecuados).
      • Hacer un Clear CMOS (Esto también se puede hacer con el Jumper correspondiente de la placa base).
    • Número de fases de alimentación, a mayor número de fases mayor estabilidad del sistema, aunque actualmente existen modelos con alimentación con fases analógicas (Con menor precisión) y modelos con alimentación digital PWM (Con mayor precisión).
    • PCB , Capacitadores sólidos, Chokes, Mosfet de Ferrita,… de mayor calidad que los convencionales.
    • Display de 2 digitos Hexadecimal o Hex (Utiliza la Base 16 (Emplea los números del 0 al 9 y las letras A (10), B (11), C (12), D (13) E (14) y F (15) ), el sistema de numeración hexadecimal permite mostrar hasta el número 255  utilizando “sólo” 2 digitos, en hexadecimal 255 equivale al número FF), que muestra un error en caso de haberlo, en lugar de emitir los típicos “pitidos” de placa base, actualmente lo implementan algunas placas base DFI (Hace tiempo se podían ver en las placas base de Epox).
    • Led de diagnóstico de Hardware (Ej: CPU, Memoria, PCIe, PCI, SATA, IDE,…).
    • Led de consumo ACPI que informan del consumo apróximado del equipo, ej: verde, amarillo, naranaja y rojo.
    • Conector unificado del Front Panel (HDD Led, Reset Switch, Power Led, Power,…), actualmente  lo implementa Asus bajo el nombre “Asus Q-Connectors”.
    • Conectores y Slot fluorescentes (UV Reactivos).
    • Conexión para hacer comprobaciones con un polímetro , actualmente se usa en algunas placas base de MSI con el chipset  P55 de los Core i5 utilizando un conector “V-Kit” (información de Noticias3D)
    • Sistemas de protección de BIOS como el Dual BIOS de Gigabyte que evita que la BIOS de la placa base resulte dañada al tener una 2ª BIOS de reserva.

Otro punto importante a tener en cuenta a la hora de comprar una placa base es su chipset, actualmente para:

  • Procesadores Intel, los chipset que dan mejor resultado por regla general son los Intel.
  • Procesadores AMD, los chipset que dan mejor resultado por regla general son los AMD/Ati, aunque hace unos años los Chipset de Nvidia (nForce) no daban malos resultados.
  • Otros fabricantes de chipset actuales son nVidia, Via o SiS, aunque actualmente estos dos últimos no fabrican chipset ni para Intel ni para AMD.

Gigabyte EP45-DS5

En la imagen (Arriba) se puede apreciar una placa base Gigabyte EP45-DS5 que reune varias de las características que comento como por ejemplo:

  • Capacitadores sólidos, Chokes y Mosfet de Ferrita de mayor calidad que los convencionales.
  • Leds de diagnostico en la placa base (CPU, Memory, PCIe 16x/8x, PCIe 4x/1x, PCI, SATA e IDE).
  • Botones en placa base: Power, Reset y Clear CMOS (Están situados en la parte inferior de la placa base).
  • Refrigeración por heat pipes de 4 piezas: Southbridge (Chipset Sur) comunicado con Northbridge (Chipset Norte) y Zona VRM (Voltage Regulator Module, Módulo Regulador de Voltaje) que se compone de dos piezas.
  • Alimentación de 2 fases para Chipset (Northbridge).
  • Alimentacion de 2 fases para Memoria RAM.

Entre los fabricantes más conocidos de placas bases están: Asus, Gigabyte, MSI, DFI (DFI-ACP y DFI LANParty), Foxconn, ASRock, Intel, Zotac, EVGA, , XFX o Sapphire entre otros ; actualmente han desparecido algunos fabricantes como Abit o Epox que no tienen placas base que utilicen chipset actuales como por ejemplo:

  • Intel P45 para Socket 775.
  • Intel P55 para Socket 1156 (Core i5).
  • Intel X58 para Socket 1366 (Core i7).
  • AMD/Ati para AM2+/AM3 (770, 780G, 790X, 790GX, 790FX)

Se puede encontrar más información sobre placas base en:

Fiabilidad de los discos duros actuales


DiscoDuroSATA

Los discos duros (HDD: Hard Disk Drive) actuales son bastante fiables (su tiempo estimado de vida es de entre unas 500.000 y 1.400.000 horas MTBF o MTTF, en esta entrada hay más información sobre la diferencia entre MTBF, MTTF y MTTR) sin embargo conviene recordar que no son “indestructibles” por lo que es aconsejable tomar una serie de medidas preventivas para evitar posibles pérdidas de datos y/o fallos físicos en los discos duros en condiciones ambientales normales de:

  • Temperatura.
  • Humedad.
  • Altitud.

Algunas de estas medidas son por ejemplo evitar:

  • En lo posible los apagados bruscos del ordenador, ya que si por ejemplo el disco duro esta realizando una operación de escritura de datos (ej: Actualizar un archivo), estos podrían dañarse al no finalizar de forma correcta, esto se puede solucionar en parte con el uso de un SAI (Sistema de Alimentación Ininterrumpida) o UPS (Uninterruptible Power Supply, Sistema de Alimentación Ininterrumpida), en esta entrada: Sistemas de protección para dispositivos eléctricos: Regletas y SAI (Sistemas de Alimentación Ininterrumpida) hay más información.
  • El sobrecalentamiento del disco duro, los discos duros tienen una temperatura operativa máxima que no es aconsejable sobrepasar (Los fabricantes de discos duros dan la información en las especificaciones técnicas de sus discos duros), no es obligatorio usar un refrigerador de disco duro pero si es conveniente que la caja del ordenador tenga un sistema de refrigeración al menos con un par de ventiladores de caja que ayude a la refrigeración de los componentes del ordenador (Chipset de placa base, Tarjeta gráfica, Disco duro,…).
  • Los movimientos bruscos, los discos duros son piezas electromecánicas (tienen una parte electrónica y otra mecánica) sensibles al movimiento ya que sus partes móviles pueden resultar dañadas, hay que tener en cuenta que actualmente los discos duros funcionan a:
    • 4.200 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 70 vueltas (4.200 Rpms / 60 Segundos = 70 Rev. por Seg). Suelen verse en discos de 2,5″ (IDE o SATA) para portátiles y discos de 1,8″.
    • 5.400 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 90 vueltas (5.400 Rpms / 60 Segundos = 90 Rev. por Seg). Suelen verse en discos de 2,5″ (IDE o SATA) para portátiles y discos de 3,5″ de sobremesa de bajo consumo (ej: Samsung SpinPoint F1 Eco Green).
    • 5.900 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 98 vueltas (5.900 Rpms / 60 Segundos = 98,333 Rev. por Seg). Actualmente el único modelo es el disco Seagate  LP que tiene varias capacidades disponibles de 1, 1,5 y 2 TB (Terabytes).
    • 7.200 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 120 vueltas (7.200 Rpms / 60 Segundos = 120 Rev. por Seg). Suelen verse en discos duros de 2,5″ de altas prestaciones, y es el estándar actual en discos de 3,5″ de sobremesa.
    • 10.000 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 166,667 vueltas (10.000 Rpms / 60 Segundos = 166,667 Rev. por Seg). Actualmente están limitados el sector de servidores de altas prestaciones con conexiones SCSI o SAS; aunque existe un disco duro SATA de 10.000 Rpms, los Western Digital Raptor (En fase de descatalogación) y los Velociraptor (Sustituyen a los antiguos Raptor).
    • 15.000 Rpms (Revoluciones por minuto), lo que significa que en un segundo da 250 vueltas (15.0000 Rpms / 60 Segundos = 250 Rev. por Seg). Actualmente están limitados el sector de servidores de altas prestaciones con conexiones SCSI o SAS.
  • Los impactos, caidas o golpes ya que pueden dañar el disco duro (Los platos o sus partes móviles como son los cabezales de lectura/escritura).

Estos problemas de fiabilidad en parte se solucionan con los nuevos SSD (Solid State Drive, Dispositivos de Estado Sólido; también llamados Solid State Disk, Discos de Estado Sólido aunque no tienen platos pero si tienen la misma función (almacenan datos) que los discos duros actuales), comentados en esta entrada: SSD (Solid State Drive, Dispositivo de Estado Sólido): Los nuevos discos duros que tienen como ventajas principales:

  1. Mejores prestaciones (tasas de lectura/escritura de datos y tiempo de acceso).
  2. Menor consumo.
  3. Reducción del calor producido.
  4. Nivel de ruido nulo, no tienen piezas mecánicas que lo generen como los discos duros actuales.
  5. Mayor resistencia a golpes y vibraciones.

Aunque los SSD también tienen sus desventajas:

  1. Alto precio en relacion Precio/GB, las unidades de 32 Gb son las más “asequibles” y aún así son caras.
  2. Tecnología nueva que todavía no se sabe su tiempo de vida ya que las memorias flash tienen un numero determinado de ciclos de lectura y escritura.
  3. Escasa capacidad de almacenamiento si lo comparamos con discos tradicionales.
  4. Problemas de rendimiento con algunas controladoras (por ejemplo el caso de los OCZ Core Series v1).
  5. El tamaño actual es de 2,5″ (tamaño de disco portátil), el estandar en sobremesa es de 3,5″ por lo que hay que recurrir a adaptadores si queremos instalar un dispositivo de este tipo.

Esquemas de conectores de datos


En la página de TodoHard podemos encontrar los esquemas de las conexiones de los conectores de datos más habituales de un ordenador y/o otros dispositivos electrónicos (ej: SCART/Euroconector), entre ellos:

  • Conector USB (Hay que tener en cuenta que el conector USB es capaz de dar 5 voltios (+5v) a los dispositivos por lo que un dispositivo USB podría dañarse si el puerto USB es por pines a placa base).
  • Puerto Serie o Com de 9 ó 25 pines.
  • Conector PS/2 (Teclado y Ratón), o Mini-Din de 6 pines.
  • Puerto Paralelo (LPT) o IEEE 1.284, de 25 pines.
  • Conector IDE/ATA de Discos Duros (HDD) y Unidades Ópticas.
  • Conector Serial ATA (SATA) de Discos Duros (HDD) y Unidades Ópticas.
  • Conector VGA (D-Sub15) de 15 pines.
  • Conector DVI.
  • Conector SCART/Euroconector.
  • Cable Null-Modem.