SSD con controladora Sand Force 1200 y fabricados a 25 nm


Hasta hace poco tiempo los SSD (Solid State Device, Dispositivos de Estado Sólido) que usaban la controladora Sand Force 1200 (SF-1200) o alguna de sus variantes se fabricaban a 34 nanómetros (34 nm), sin embargo desde hace unos meses los fabricantes de SSD han ido migrando a los 25 nm (Hay más información en esta entrada del Blog).

Corsair Force F60 de 34 nm (CSSD-F60GB2-BRKT)

Algunos de los fabricantes que ya han migrado a 25 nm o bien han iniciado el proceso son:

  • OCZ (Su modelo más conocido es el Vertex2): Dando lugar a numerosas quejas de usuarios de los Vertex2 (Más información en este hilo del Foro de Noticias3D), por las que el fabricante ha tenido que “rectificar” su política (Mas información en este otro hilo del Foro de Noticias3D).
  • Corsair (Serie Force): Para evitar confusiones a sus clientes potenciales ha optado por indicar la capacidad real como ha sido en el caso del F115 (SKU# CSSD-F115GB2-BRKT-A) que sustituye al F120 (SKU# CSSD-F120GB2-BRKT); o bien renombrar los modelos coincidentes con una “A” al modelo en cuestión si tenía la misma capacidad que el anterior como por ejemplo ha pasado con el F80A (SKU# CSSD-F80GB2-BRKT-A), e incluso más recientemente con el F60 (SKU# CSSD-F60GB2-BRKT) y F60A (Este último aparece listado en Alternate, una tienda online española, aunque no aparece en el catálogo online de Corsair).
  • G. Skill: Para evitar confusiones, ha comercializado un modelo “nuevo” (Phoenix EVO de 25 nm) para sustituir a los “antiguos” Phoenix Pro de 34 nm (Información de Hardzone).

Corsair Force F60A de 25 nm (CSSD-F60GB2-BRKT-A)

Por otra parte otros fabricantes como Mushkin han optado por no migrar a los 25 nm hasta que la fiabilidad y prestaciones de los modelos de 25 nm sean similares a la de los de 34 nm (Información de MadBoxPC); así mismo habría que saber si otros fabricantes de SSD que utilizan controladoras SF-1200 como por ejemplo Patriot (Con su modelo Inferno), entre otros) han migrado también a los 25 nm o por el contrario siguen fabricando sus SSD con 34 nm.

Anuncios

Usuarios: Los nuevos “Beta tester” gratuitos de los fabricantes


Parece mentira que a estas alturas los fabricantes tanto de software como de hardware no saquen productos con un mínimo de fiabilidad y nos utilicen a los usuarios como “Beta tester” (Los Beta tester son usuarios experimentados (Generalmente con conocimientos de programación) que prueban los programas durante la fase de desarrollo previa a la versión final por lo que las versiones que utilizan no son estables al 100% y pueden tener “bugs” (Fallos o errores de programación) y que con su ayuda muchos de ellos son corregidos, en muchos casos son contratados por las propias empresas desarrolladoras de software aunque también existen Beta tester que trabajan desinteresadamente ofreciendo soporte y ayuda a la comunidad GNU) de sus productos; de hecho en el sector informático desde hace unos años se han producidos unos cuantos problemas sobre todo a nivel de hardware (Componentes) como por ejemplo:

  • El bug (Fallo) TLB (Translation Lookaside Buffer) de los primeros AMD Phenom en 2007 (Información de Noticias3D), aunque este aparecía solamente en situaciones muy concretas por lo que era difícil que apareciera. aunque no imposible (Las siguientes revisiones de AMD Phenom si corrigieron este error).
  • El fiasco de los Seagate Barracuda 7200.11 en 2009 a los que muchos compradores tuvimos que actualizarles el firmware para evitar que el disco se averiase prematuramente con los datos almacenados (Información de Noticias3d.com, Theinquirer.es y Gizmología).
  • Los problemas que en menor medida tuvieron los Seagate Barracuda 7200.12 (Información del Foro Noticias3D).
  • Los problemas de bloqueos/congelamientos que tienen actualmente algunos de los disco híbridos Momentus XT de Seagate (Información de: Engadget, MundoBip y Foro Noticias3D).
  • El problema de aparcado de cabezas (LLC: Load Cycle Count) que sufren los Western Digital Green (Información del Foro Noticias3D).
  • El problema de las controladoras SATA de Intel en los chipset Q67, B65, H67, P67, QS67, QM67, HM67, HM65 o UM67 que utilizan los actuales Intel Sandy Bridge con Socket LGA 1155 (Información de Security Art Work y Foro Noticias3D).
  • La reducción de capacidad y rendimiento de algunos SSD Vertex2 de OCZ (Información del Foro Noticias3D).

Claro que es posible que los fabricantes saquen al mercado sus productos sin un testeo serio por su parte para comprobar los posibles problemas que tengan sus productos por varios motivos:

  • Desconocimiento del fallo (Cosa poco probable ya que supone que un fabricante debería vender un producto con una fiabilidad relativamente buena, ya que tampoco le interesa vender un producto que tenga un alto nivel de RMA (Devoluciones) durante el periodo de garantía porque además de dar mala imagen a la empresa puede perder muchos clientes potenciales).
  • Reducción de costes de los productos (Ej: Discos duros), aunque algunos productos no son lo que se dice “baratos” (Ej: SSD o las Placas base de gama media/alta).

De todas formas el tema de los errores de fabricación no solo se restringe al hardware (Componentes) del mercado informático (En Software es más complicado ya que los errores siempre existen y se van corrigiendo a medida que aparecen) sino que se dan en otros mercados como el automovilístico (Las famosas llamadas a revisión que realizan los fabricantes de automóviles cuando detectan algún fallo en el vehículo que comercializan a través de sus concesionarios.

Por esta razón suele ser mejor opción esperar un tiempo prudencial para ver como funcionan los nuevos productos que aparecen en el mercado para comprobar su fiabilidad; aunque eso no significa que pueda tocarnos uno defectuoso por mala suerte.

SSD de 25nm: ¿Son tan buenos como parecen?


Corsair Force F60 (SSD de 34 nm)

Actualmente muchos de los SSD (Solid State Device, Dispositivo de Estado Sólido) que hay en el mercado son de 34nm, sin embargo algunos fabricantes están “migrando” a los 25nm, esto tiene varias ventajas para ellos:

  • Reducir costes de fabricación (Lo cual debería repercutir en el usuario final al poder comprar un producto más barato aunque no siempre es así), ya que de una misma oblea sale una mayor cantidad de unidades.
  • En el caso de los SSD podría aumentarse la capacidad de almacenamiento de las unidades.
  • Reducir la temperatura (Aunque en memoria Nand Flash es poco improbable ya que apenas se calientan).
  • Mayor fiabilidad.
  • Mayor rendimiento.
  • Menor consumo (En el caso de la memoria Nand Flash es poco improbable que se reduzca el consumo de forma significativa ya que es bastante bajo).

Sin embargo esta migración a los 25nm va a tener varias desventajas para el usuario:

  • Menor rendimiento (Según las pruebas realizadas por Corsair en sus nuevos SSD de 25 nm, estos tienen entre un 3 y un 4 % menos de rendimiento que los modelos equivalentes de 34 nm de la generación anterior), aunque únicamente sería visible en Benchmarks o Test de rendimiento, ya que en el uso diario no sería apreciable.
  • Menor capacidad de almacenamiento útil ya que para mantener la fiabilidad del dispositivo el Spare Area (Área de Reserva) debe ser mayor que la de los modelos de 34 nm, esto se debe a que los ciclos de escritura para Nand Flash de 25nm es de 3.000 ciclos (Es decir una memoria Nand Flash de 25nm puede ser escrita 3.000 veces sin que de “problemas”), sin embargo una memoria Nand Flash de 34nm soporta hasta 5.000 ciclos.

Por ahora los únicos fabricantes que han migrado a 25nm son OCZ la cual ha tenido graves problemas con sus usuarios ya que al descubrirse el “pastel” ha habido quejas masivas de sus usuarios y Corsair que por lo que parece ha aprendido la lección y comercializará sus modelos con otras referencias diferentes a las de los modelos actuales, pasando los Corsair F80 de 80 GB y F120 de 120 GB de 34 nm, a denominarse Corsair Force 80A (80 GB) y Force 115 (115 GB) de 25 nm.

Es de suponer que el resto de fabricantes de SSD (G.Skill, Mushkin, Crucial, Intel,…) que migren a 25 nm hagan algo similar a lo que ha hecho Corsair si no quieren producir una “desbandada” de usuarios que se vayan a otras marcas como les ha ocurrido a OCZ con sus Vertex2/Agility2, que han tenido que comenzar un programa de reemplazo de unidades a raíz de las quejas de los usuarios.

Se puede encontrar más información en:

Memorias USB 2.0 de alto rendimiento


Hace poco comente algunas memorias flash USB 3.0 de alto rendimiento (Entre ellas A-Data Nobility N005, Mach Xtreme FX Series, Super Talent ExpressDuo, ExpressDrive y DriveRAID), en esta entrada del Blog comentaré algunas de las memorias USB 2.0 actuales de mayor rendimiento (Con más de 25 MB/Seg en lectura y más de 10 MB/Seg en escritura) entre las que estan:

  • Mushkin Mulholland (Hasta 32 MB/Seg en lectura y 17 MB/Seg en escritura): La unidad de 8 GB ronda los 24 € (Sin contar gastos de envío) en PCCool (Una tienda online portuguesa). Reviews de Overclockers Club (En inglés) modelo de 2 GB, y de 16 y 32 GB.

Mushkin Mulholland

  • Mushkin Midnight USB Turbo Flash Stick (Hasta 40 MB/Seg en lectura y 30 MB/Seg en escritura): Curiosamente este modelo no aparecen en la web oficial de Mushkin, la unidad de 8 GB ronda los 42 € (Sin contar gastos de envío) en PCCool (Una tienda online portuguesa). Reviews de Hardware.de (En aleman) del modelo de 32 GB.

Mushkin Midnight

  • Patriot Xporter XT Boost (Hasta 30 MB/Seg en lectura y 13 MB/Seg en escritura): Una ventaja es que el modelo esta recubierto de goma por lo que puede aguantar pequeños golpes y/o derrames de líquidos, el modelo de 8 GB ronda los 15 € en Alternate sin contar gastos de envío. Reviews de MadboxPC y Justecnh (En inglés).

Patriot Xporter XT Boost

  • Patriot x/xx XP-Bolt (Hasta 27 MB/Seg en lectura y 13 MB/Seg en escritura): Puede usar un sistema de encriptación de datos (AES de 256 Bits), el modelo de 8 GB ronda los 19 € en Alternate sin contar gastos de envío. Reviews de TechReaction (En inglés).

Patriot x/xx XP-Bolt

Patriot Xporter XT Rage

A las cuales habría que sumar:

Otras memorias USB 2.0 de altas prestaciones, comentadas en otras entradas del Blog como por ejemplo:

Otros modelos “mixtos” (USB 2.0 y eSATA) comentados en estas entradas del Blog:

Los modelos USB 3.0 comentados en estas entradas del Blog:

Compiten en otra “liga” de rendimiento ya que es bastante superior al de las USB 2.0 pero también hay que tener en cuenta que para aprovechar el rendimiento extra que puede ofrecer una memoria USB 3.0 es necesario disponer de puertos USB 3.0 en la placa base ya que sino la memoria USB 3.0 funcionara como USB 2.0 “perdiendo” rendimiento.

Conexiones de datos de alta velocidad para dispositivos de almacenamiento interno


Actualmente el conector de datos más común en ordenadores domésticos es:

  • Serial ATA (SATA150) que soporta hasta 150 MB/Seg por conector, en principio este ancho de banda es más que suficiente para cualquier disco duro (HDD: Hard Disk Drive) mecánico actual, aunque se queda corto para los SSD (Solid State Device, Dispositivo de Estado Sólido) basados en memoria flash (En estas entradas del Blog: SSD (Solid State Drive, Dispositivo de Estado Sólido): Los nuevos discos duros y Guía para comprar un SSD (Solid State Device, Dispositivo de Estado Sólido) hay más información sobre estos dispositivos).
  • Serial ATA2 (SATA300) que soporta hasta 300 MB/Seg por conector, en principio este ancho de banda es suficiente para casi cualquier SSD (Solid State Device, Dispositivo de Estado Sólido) actual a excepción de los Crucial C300 que son SATA3 (SATA600) ya que su capacidad de lectura es de 355 MB/Seg (Usando SATA300 se “quedan” en 265 MB/Seg).

Para solucionar el problema de ancho de banda sobre todo para los futuros SSD de altas prestaciones (Sin tener que recurrir al bus PCI Express (PCIe) como hacen por ejemplo los Revo Drive de OCZ, en esta entrada del Blog hay más información sobre este dispositivo) se puede utilizar:

  • Serial ATA 3 (SATA600) soporta hasta 6 Gbps (Unos 600 MB/Seg) por conector, actualmente es una buena opción ya que ningún SSD con conexión SATA supera los 400 MB/Seg.
  • SAS (Serial Attached SCSI) es una conexión que ha sustituido al antiguo SCSI (Small Computer System Interface), se utiliza en Servidores profesionales debido al alto coste tanto de las controladoras como de los dispositivos de almacenamiento, de hecho su evolución es similar a SATA (Los discos SAS son incompatibles con conexiones Serial ATA), la norma actual es SAS 6 Gbps (SAS 600) que soporta hasta 600 MB/Seg y se espera que para 2010 llegue hasta los 12 Gbps denominandose SAS 1200 que tendria aproximadamente 1,2 GB/Seg de ancho de banda.

Sin embargo ya hay proyectos para aumentar aun más la tasa de transferencia de los dispositivos internos como es el caso del conector:

  • High Speed Data Link (HDSL) de OCZ que utiliza un cable SAS de alta calidad, actualmente tiene un ancho de banda de 2 Gbps pero se espera que llegue en un futuro hasta 20 Gbps (Probablemente en un futuro tenga mejoras de velocidad como ocurre con la mayoría de conexiones de datos), HDSL se utiliza en los nuevos OCZ Ibis que tienen 4 controladoras Sand Force 1200 (SF-1200) en RAID 0 llegando a ofrecer unas prestaciones de hasta 804 MB/Seg en lectura y 675 MB/Seg en escritura (Información de Infochaos Digital).
  • Light Peak desarrollado por Intel que utiliza un cable de fibra óptica e inicialmente tendra un ancho de banda de 10 Gbps,  que en un futuro proximo podria llegar hasta los 100 Gbps, en principio se espera que aprezca en 2011.

Estos conectores permiten “apilar” los discos en niveles RAID (En esta entrada del Blog hay más información) siempre y cuando la controladora lo soporte, mientras que el uso de SSD con conexión PCIe no permite la “apilación” porque los discos trabajarian de forma individual.

Se puede encontrar más información en:

OCZ Revo Drive: Unidades SSD en formato PCI Express (PCIe) de baja capacidad


Hasta hace poco las unidades SSD (Solid State Device, Dispositivo de Estado Sólido) basadas en memorias Nand Flash como medio de almacenamiento se encontraban principalmente como discos de: 2,5″ (Tamaño de disco portátil, para poder usarlo en un equipo de sobremesa era necesario utilizar un adaptador de 2,5″@3,5″), aunque también existen otros formatos (Como comente en esta entrada del Blog):

  • 1,8″ (Tamaño inferior al de un disco portátil).
  • 3,5″ (Tamaño de disco de sobremesa, no son muy frecuentes aunque existen algunos modelos de OCZ en este formato).

Sin embargo desde hace tiempo también se comercializan SSD en formato PCIe (Usando una tarjeta PCIe) como ha sido el caso del Photofast G- Monster o el OCZ Z Drive (Se puede encontrar más información en esta entrada del Blog) cuyos precios eran bastante altos.

Actualmente parece que OCZ ha sacado al mercado modelos en formato PCIe más “asequibles” con menor capacidad y rendimiento como es el caso del OCZ Revo Drive que utiliza una conexión PCIe 4x, sus características principales son:

50-80GB Max Performance

  • Read: Up to 540 MB/s
  • Write: Up to 450 MB/s
  • Sustained Write: Up to 350 MB/s
  • Random Write 4KB (Aligned): 70,000 IOPS

120GB-480GB Max Performance

  • Read: Up to 540 MB/s
  • Write: Up to 480 MB/s
  • Sustained Write: Up to 400 MB/s
  • Random Write 4KB (Aligned): 75,000 IOPS

El gran rendimiento de estas unidades se debe al uso de un RAID 0 interno.

Su precio es de unos 243 € para el modelo de 50 GB, unos 300 € para el de 80 GB y unos 375 € para el de 120 GB, el resto de modelos de mayor capacidad tienen precios algo desorbitados.

Sin embargo hay que tener en cuenta que el Revo Drive puede tener varias “desventajas” frente al uso de dos o más SSD con conexión Serial ATA en RAID 0, entre otras:

  1. Utiliza un RAID 0 interno por lo que en caso de fallo habría que sustituir posiblemente la tarjeta completa.
  2. No se puede hacer un RAID utilizando tarjetas PCIe 4x, mientras que con conexiones SATA si es posible, actualmente la mayoria de las placas base suelen traer al menos entre 4 y 6 conexiones SATA300 e incluso en algunos casos incorporan controladoras SATA RAID adicionales sencillas de otros fabricantes, las cuales requieren sus propios drivers/controladores.

Además de no ser compatible con todas las placas base, OCZ tiene un listado en PDF con las que han probado.

SSD (Solid State Device) de OCZ de 3,5″ (Colossus/Colossus LT, Agility2 y Vertex2) y 1,8″ (Onyx y Vertex2)


Hasta ahora los SSD (Solid State Device, Dispositivos de Estado Sólido) se presentaban por norma general en formato de 2,5″ (Tamaño de disco portátil) siendo necesario usar un adaptador de 2,5″@3,5″ que suele venir incluido con ellos, sin embargo desde hace algun tiempo el fabricante OCZ comercializa los Colossus/Colossus LT (La diferencia principal es su tiempo de vida en horas MTBF que en el primer caso es de 1.500.000 mientras que en el segundo llega hasta 1.000.000 horas) en formato 3,5″ (Tamaño de disco de ordenador de sobremesa) sin embargo estos discos duros a pesar de tener un buen rendimiento (Utilizan un RAID 0 interno):

  • Hasta 260 MB/Seg en lectura.
  • Hasta 260 MB/Seg en escritura.

Pero tienen la desventaja de ser relativamente caros, el modelo más “pequeño” es de 120 GB y ronda los 345 € (Colossus LT) o 450 € (Colossus).

Sin embargo parece que OCZ ha sacado al mercado unos nuevos SSD en formato de 3,5″, basados en la controladora Sand Force 1200/SF-1200 que no son más que una variante de los modelos de 2,5″ comercializados desde hace algún tiempo, aunque la capacidad de los modelos de 3,5″ oscila entre los 90 y 480 GB.

Teniendo en cuenta que el precio del modelo de 90 GB sale por unos 233 € para el Agility2 y de unos 243 € para el Vertex2 (Hasta 285 MB/Seg en lectura y hasta 275 MB/Seg en escritura) no parecen mala opción (La diferencia principal esta en la cantidad de IOPS (Input Output Per Second, Operaciones de Entrada Salida por Segundo) que soportan, el Agility2 esta “limitado” a 10.000, mientras que el Vertex2 soporta hasta 50.000 IOPS) para aquellos que no quieran utilizar adaptadores de 2,5″@3,5″ o los vayan a utilizar en Racks Extraibles/Back Planes (En esta entrada del Blog hay mas información sobre estos dispositivos), sin embargo tienen la desventaja de que en caso de que lo sustituyamos por uno mejor, no poder ser “reciclados” en un equipo portátil aunque si pueden ir a otro equipo de sobremesa.

Hay que tener en cuenta que realmente el tamaño físico que ocupa un SSD es mínimo en comparación con un disco duro mecánico, de hecho existen SSD en formato de 1,8″ (Más pequeños que el tamaño de disco portátil) que en muchos casos mantienen incluso la capacidad y prestaciones de los modelos equivalentes de 2,5″, a costa de un precio mayor, como por ejemplo es el caso de los:

  • OCZ Onyx Series (Llevan una controladora Indilix Amigos, que es una versión recortada de la Indilix Barefoot).

  • OCZ Vertex2 Series (Llevan una controladora SF-1200 que actualmente es una de las controladoras de SSD con mayor rendimiento).

Otros fabricantes como Intel (Intel X18-M) y Transcend (TSxxGSSD18S-M) también disponen de SSD de 1,8″.