¿Almacenamiento en soporte físico u online?


Hasta hace poco lo habitual era guardar los datos en soportes de almacenamiento físico como por ejemplo:

  • Disquetes de 3,5″ con 1,44 MB (Actualmente apenas se utilizan).
  • Unidades Zip/Jazz de varios GB (Actualmente apenas se utilizan), eran “disquetes” removibles de alta capacidad aunque no eran compatibles con los discos de 3,5″.
  • CDs (650/700 MB)/DVDs (DVD5 de 4,38 GB y DVD9 de 7,92 GB “efectivos”).
  • Discos duros (HDD: Hard Disk Drive) bien internos (Conectados mediante IDE/UDMA, SATA, SCSI o SAS que con los conectores más comunes) o externos (Utilizando como bus USB 2.0, Firewire400/800, eSATA, USB 3.0,…), actualmente tienen capacidades de varios cientos de GB (De hecho actualmente el “tope” son 2 TB (2.000 GB), aunque se espera que aparezcan discos de mayor capacidad en breve).
  • Memorias Flash USB (Ls denominados “Pendrives”).
  • Tarjetas de memoria (Compact Flash (CF), Secure Digital (SD), Multimedia Card (MMC), Memory Stick,…).
  • SSD (Solid State Device, Dispositivos de Estado Sólido basados en memoria flash. Son las unidades de almacenamiento que sustituiran a los discos duros actuales en un futuro próximo, aunque actualmente tienen un precio “prohibitivo” para dedicarlos a almacenamiento de datos (Una unidad de 60 GB de ultima generación ronda los 120 €), aunque para discos de Sistema (Almacenamiento de Sistema Operativo, Programas y Juegos) son muy buena elección ya que actualmente son los dispositivos de almacenamiento más rápidos, incluso superan en rendimiento a los discos SCSI/SAS de 10.000 y 15.000 Rpms, cuando en un entorno doméstico se utilizan discos de 7.200 Rpms o como mucho discos SATA Western Digital Raptor/Velociraptor de 10.000 Rpms, aunque estos ultimos han perdido la batalla con los SSD en rendimiento no asi en capacidad, un Velociraptor de 300 GB ronda los 140 € mas portes en Alternate, curiosamente el modelo de 150 GB tiene el mismo precio pero la mitad de capacidad).

Disco duro (HDD: Hard Disk Drive)

 

Las ventajas de un almacenamiento en soporte físico son:

  • Tenemos un acceso a los datos instántaneo (Lógico ya que solo tenemos que conectar la unidad al ordenador).
  • El mantenimiento y ordenamiento de la información la realizamos nosostros mismos (El usuario/administrador es quien decide los datos que deben ser replicados y cuales son “innecesarios” en caso de fallo).
  • Al tenerlos en un soporte físico se pueden extraer contenido fácilmente a otros soportes (Por ejemplo si tenemos videos personales en formato DVD, podremos grabarlos en un DVD sin muchos problemas).
  • El mantenimiento de copias de seguridad esta más controlado, existen programas que permiten realizar copias cada cierto tiempo de carpetas/particiones determinadas.
  • En principio requiere menos seguridad (No es necesario poner el nombre de usuario (Login) ni contraseña (Password), aunque en algunos sistemas de almacenamiento externo existe esa posibilidad para aumentar la seguridad de los datos, incluso existen sistemas de almacenamiento externo que usan sistemas de seguridad biométricos mediante huella digital para dar acceso a los datos o denegarlo).

Pero también tienen sus desventajas:

  • Un fallo mecánico (En el caso de un disco duro) o electrónico (En el caso de un disco duro, memoria flash,…) puede estropear la unidad de almacenamiento con nuestros datos dentro, haciendo practicamente imposible la recuperación de los mismo (En casos muy graves la única solución es recurrir a una empresa especializada en recuperación de datos pero este proceso no es precisamente barato).
  • Un malware (Virus, Gusanos,…) puede dañar los datos y/o las unidades lógicas (Particiones) dificultando el acceso a los datos.
  • Puede haber un borrado de datos por algun usuario/administrador bien de forma involuntaria (Por despiste) o bien hecha a conciencia (Por ejemplo un usuario malintencionado que entre en el equipo bien de forma remota o fisicamente) y borre datos importantes.
  • Averías de los sistemas de alamcenamiento debidas al desgaste de los componentes mecánicos (Todos los discos duro terminan averiandose tarde o temprano, ya que tienen una gran cantidad de piezas moviles que sufren un desgaste con el tiempo de uso).
  • Posibilidad de que roben la unidad físicamente.
  • Es necesario que el usuario/administrador tengan una política de copias de seguridad (Por ejemplo realizar un copia mensual de los datos poco importantes y una semanal de los datos críticos, de esta forma en caso de fallo tendriamos los datos del mes anterior y los de la semana pasada, sin embargo si hacemos una copia de seguridad de los datos poco importantes trimestralmente y una copia mensual de los datos críticos en caso de fallo recuperariamos los datos no criticos de hace tres meses y los críticos del mes anterior).
  • Otro problema es el espacio que ocupan físicamente los soportes de almacenamiento físico (Discos duros, CDs, DVDs,…) que requieren algun sistema para archivarlos de forma adecuada.
  • Así mismo un cambio de formato de almacenamiento afectas a los soportes, ya que por ejemplo hace años lo “normal” eran los discos de 3,5″ con 1,44 MB, despues aparecieron las unidades Zip/Jazz y practicamente al par las primeras grabadoras de CDs de 650/700 MB, poco despues las grabadoras de DVD de una capa (DVD5 con 4,38 GB “utiles”) y posteriomente las de doble capa (DVD9 con 7,92 GB “utiles”), mientras que los discos duros han crecido en capacidad de forma increible (Actualmente hay discos duros de 1 y 2 TB, o lo que es lo mismo 1.000 y 2.000 GB) y unidades flash (USB o en formato tarjeta) con varios GB de capacidad. Por lo que se hace aconsejable elegir bien el tipo de soporte (Quizas actualmente la mejor opcion sea el uso de discos duros de gran capacidad ya que apenas ha variado con el tiempo mientras que otros formatos (Ej: Zip/Jazz) o bien ha desaparecido del mercado o bien se han ido “mejorando”  como ha sido el caso de las unidades ópticas (Primero salieron los CDs, despues los DVDs y ahora están los Blu-Ray que admiten hasta 25 GB por capa).

Sin embargo actualmente esta apareciendo los soportes online o almacenamiento en red (También llamado Cloud Computing, Computación en Nube) tanto gratuitos como de pago que puede ser en el ámbito de:

  • Una Intranet (Ej: Red local de una pequeña empresa).
  • Una VPN (Virtual Private Network, Red Privada Virtual).
  • La propia Internet (La Red de Redes).

Cuyas ventajas son:

  • Tenemos acceso a nuestros datos desde cualquier lugar siempre y cuando exista una conexión a internet (Ej: ADSL, Cable, 3G, GPRS,…), los datos normalmente se almacenan en servidores “apilados” que reciben el nombre de Datacenter (Centros de Datos) o CPD (Centro de Procesamiento de Datos), información de Wikipedia.
  • Almacenamiento de datos en servidores remotos (No son accesibles localmente por lo que se aumenta la seguridad física de los datos evitando en lo posible que usuario malintencionados puedan acceder localmente a los datos y/o robar las unidades de almacenamiento).
  • No es necesario cambiar el formato de los archivos, aunque si podría ser necesario tener un programa compatible con el tipo de formato para poder abrirlo/editarlo.
  • Mayor seguridad, no hay que preocuparse por mantenimiento (Copias de seguridad), malware (Virus, Gusanos,…), ya que otros (Los administradores del sitio donde se almacenan los datos) se encargan de ello.
  • Es posible hacer copias de los datos online (En servidor remoto), en nuestro ordenador de forma local por si queremos aumentar la seguridad de los Back-Ups (Copias de seguridad) de los datos críticos.
  • El espacio ocupado por nuestros datos online se almacena en servidores remotos, es decir que no necesitariamos unidades de almacenamiento físicas (Ej: Discos duros) para almacenamiento local.
  • En muchos casos el almacenamiento online es gratuito, aunque existen opciones de pago con más ventajas (Ej: Mayor capacidad de almacenamiento).
  • Permite la reproducción de audio y video en “streaming” (Al vuelo), no es necesario descargar el fichero en nuestro equipo (Se reproduce a medida que avanza) esto por norma general suele funcionar sin embargo si la red esta muy colapsada o bien nuestra conexión no es tan rápida como debería pueden producirse parones o “cortes” durante la reproducción del archivo audiovisual.

Data Center (CPD: Centro de Procesamiento de Datos)

 

Sin embargo el almacenamiento en red también tiene sus desventajas:

  • Si no disponemos de conexión a Internet por la razón que sea no tendremos acceso a nuestros datos online, por lo que para poder acceder a nuestros datos online siempre será necesario disponer de una conexión a Internet forzosamente (Cosa que no ocurre con el almacenamiento físico o almacenamiento local).
  • No tenemos ningún control sobre los datos, por ejemplo si la empresa lleva a cabo tareas de mantenimiento es posible que nuestro servidor de almacenamiento online este fuera de línea (Off line o Inaccesible) cuando es posible que necesitamos tener acceso a ellos de forma “urgente”.
  • Por otra parte se supone que las empresas de almacenamiento online, se dedican precisamente a almacenar datos de usuarios pero tampoco se puede estar seguro al 100% que donde tengamos alojados nuestros datos los utilicen de algún modo e incluso manipularlos de alguna forma.
  • En caso de desastre (Ej: Un fallo en el servidor) podrían perderse los datos aunque en estos casos lo normal es que las empresas tengan copias de seguridad (Back-Ups) para restaurarlos, claro que es posible que la copia de seguridad restaurada no sea de “ayer” (Día anterior al desastre) sino que tenga otra fecha (Ej: La semana pasada) y por tanto los datos restaurados no estarían actualizados a día de “hoy” sino a la fecha de restauración.
  • Los portales de Streaming (Ej: Youtube,…) son los que deciden que contenidos se pueden subir y cuales no (Por norma general aquellos contenidos con derechos de autor (Copyright) suelen ser borrados lo antes posible para evitar una posible demanda por parte del autor o compañia representante (Ej: SGAE, RIAA) por reproducir un contenido audivisual sin autorización), de hecho sitios como MegaUpload, MediaFire,… que se dedican a alojar archivos en la red verifican que los archivos no tengan copyright, en caso de tenerlo actuan en consecuencia (Lo normal es que borren el archivo).
  • Limitación del ancho de banda, por ejemplo en España actualmente la conexión más rápida sin tener en cuenta la opcion de 50 Mbps/3 Mbps de ONO son las conexiones ADSL/Cable de como mucho unos 20 Megas (20 Mbps/1 Mbps) aunque en pequeñas ciudades y zonas rurales es más frecuente ver conexiones de 6 Mbps/300 Kbps o incluso menos lo cual limita bastante el uso de los sistemas de almacenamiento online porque hay que tener en cuenta que antes de tener alojados nuestros archivos en la Red (Internet) hay que subirlos a la misma, pero la velocidad de subida que tenemos actualmente es bastante “baja”:
    • 3 Mbps (Unos 384 KB/Seg).
    • 1 Mbps (Unos 128 KB/Seg).
    • 300 Kbps (Unos 38,4 KB/Seg).

En comparacion con la velocidad de bajada:

  • 50 Mbps (Unos 6.400 KB/Seg, aproximadamente 6,25 MB/Seg).
  • 20 Mbps (Unos 2.560 KB/Seg, aproximadamente 2,25 MB/Seg).
  • 10 Mbps (Unos 1.280 KB/Seg, aproximadamente 1,25 MB/Seg).
  • 6 Mbps (Unos 768 KB/Seg, aproximadamente 0,75 MB/Seg).
  • 3 Mbps (Unos 384 KB/Seg, aproximadamente 0,375 MB/Seg).

Es decir que si por ejemplo queremos subir 100 MB (0,1 GB) teniendo en cuenta las velocidades de subida actuales tardaríamos aproximadamente:

  • Unos 4 minutos y 24 segundos aproximadamente con una conexión de 3 Mbps (Unos 384 KB/Seg).
  • Unos 13 minutos y 18 segundos aproximadamente con una conexión de 1 Mbps (Unos 128 KB/Seg).
  • Unos 44 minutos y 24 segundos aproximadamente con una conexión de 300 Kbps (Unos 38,4 KB/Seg).

Logicamente cuanto mayor sea el archivo mayor sería el tiempo de subida del mismo, es decir para subir por ejemplo un archivo de 300 MB tardaríamos aproximadamente el triple de tiempo con las conexiones comentadas anteriormente.

Se puede encontrar más información en:

Averías más comunes de un ordenador


En estas dos entradas:

Comente las averías más caras que puede tener un ordenador de sobremesa y uno portátil.

En esta ocasión comentare las averías más habituales que suelen tener los ordenadores (Independientemente de que sea de sobremesa o portátiles):

  • Averías por desgaste mecánico (Estas ocurren tarde o temprano debido al propio uso y desgaste de los componentes mecánicos, son las más habituales) en esta categoría entrarían:
    • Discos duros ya que tienen una parte electrónica y otra mecánica (Motor, brazo de lectura/escritura,…).
    • Unidades ópticas (Lector y Grabadora de CDs/DVDs).
    • Disquetera.
    • Ventiladores de cualquier componente (Placa base, Tarjeta Gáfica, Procesador, Fuente de alimentación y Caja).
  • Averías electrónicas (En principio no tienen una aparición concreta por lo que son indefinidas e “impredecibles”), como por ejemplo aquellas que afectan únicamente a componentes electrónicos:
    • Tarjetas (Gráfica (GPU: Graphics Processing Unit, Unidad de Procesamiento Gráfico), Sonido, Red,…).
    • Memoria RAM.
    • Placa base (Motherboard o Mainboard).
    • Microprocesador o Procesador (CPU: Central Processing Unit, Unidad Central de Proceso).

Así mismo hay que tener en cuenta que los componentes con piezas mecánicas también tienen una parte electrónica por lo que la posibilidad de fallo se puede decir que es aun mayor.

Hay que tener en cuenta que las averías electrónicas suelen ser menos frecuentes que las mecánicas y que además ambos tipos de averías pueden verse reducidas si:

  • Se adquiere hardware de cierta calidad en lugar de hardware de marca genérica en especial en componenentes básicos como es el caso de la fuente de alimentación (En la sección Guía para comprar/actualizar… hay diversas entradas sobre diferentes componentes informáticos).
  • Se utilizan sistemas de protección eléctricos: Regletas con protecciones eléctricas y/o SAI (Sistema de Alimentación Ininterrumpida) que se comentaron en esta entrada del Blog.

¿Cuáles son las averías más caras de un ordenador de sobremesa?


Los ordenadores como cualquier otro equipo electrónico doméstico (Lavadora, Lavavajillas, Televisión,…) pueden sufrir una avería, centrándome en las averías de hardware que puede tener un ordenador (Sin tener en cuenta periféricos como: Monitor, Impresora, Escáner, Multifunción, Altavoces, Módem, Router,…), de mayor a menor importancia y coste (En este último caso teniendo en cuenta tanto los materiales como de montaje/configuración o mano de obra) sería:

  1. Disco duro (HDD: Hard Disk Drive): En caso de que el disco duro falle, será necesario cambiarlo por uno nuevo, además generalmente es necesario reinstalar el Sistema Operativo de nuevo junto con los datos del usuario, y si además es necesario recuperar los datos del disco duro antiguo porque no es accesible (Tiene un fallo grave en la controladora o en alguna pieza mecánica) el coste de la reparación puede dispararse ya que la recuperación de datos es un proceso complejo y costoso (Por esta razón es necesario tener copias de seguridad de los datos importantes en otros soportes de almacenamiento).
  2. Placa base (Motherboard o Mainboard): Es otra de las averías más caras, en primer lugar es necesario encontrar una placa base nueva compatible con el hardware (Procesador, Memoria, Tarjeta Gráfica,…) que tenemos (A veces puede ser necesario incluso tirar de segunda mano si no se encuentran nuevas, aunque habría que informar de ello al usuario), además es necesario desmontar practicamente el equipo completo, volver a montarlo de nuevo dentro de la caja y por norma general es necesario reinstalar el Sistema Operativo (Si los datos de usuario se encuentran en otra partición o disco duro diferente no es necesario salvarlos, en caso contrario sería necesario salvar los datos si no lo ha hecho el usuario), ya que por regla general es dificil que dos placas base tengan el mismo Chipset, Tarjeta de sonido, Red,…
  3. Microprocesador (CPU: Central Processing Unit, Unidad Central de Procesamiento): El coste depende en parte de si es posible encontrar un procesador nuevo compatible (En ciertos casos hay que tirar de segunda mano, informando previamente al usuario) con la placa base (Sin tener que actualizar la BIOS (Basic Input-Output System, Sistema Básico de Entrada/Salida) de la placa base ya que algunos procesadores actuales sólo funcionan en placas antiguas si se actualiza la BIOS a una versión más actual y si no tenemos un procesador compatible será casi imposible realizar dicho cambio; además hay que desmontar el disipador de CPU para quitar el procesador (CPU) averiado, colocar el procesador nuevo, limpiar la pasta térmica del disipador original e instalar de nuevo el disipador con pasta térmica nueva (El uso de pasta térmica evita que el procesador se sobrecaliente excesivamente), en el caso de que el disipador no sea compatible con el nuevo procesador sería necesario además sustituirlo por uno que soporte el calor generado por el nuevo procesador.
  4. Tarjeta gráfica (GPU: Graphics Processing Unit, Unidad de Procesamiento Gráfico): Por regla general su coste en mano de obra no suele ser excesivo (Hay que tener en cuenta que debe ser compatible, es decir si tenemos una tarjeta AGP es necesario comprar una AGP, si es PCI Express (PCIe) e habra que comprar una PCIe, ya que las tarjetas AGP y PCIe son incompatibles fisicamente) ya que el cambio en caso de ser la misma tarjeta (Ej: Pasar de una Ati a otra Ati, o de una nVidia a otra nVidia con suerte puede bastar con cambiar una tarjeta por otra (En muchos casos los drivers instalados si son de los más actuales es posible que soporten la nueva tarjeta gráfica, sin embargo en caso de ser tarjetas de fabricantes diferentes, ej: Ati, nVidia) habría que:
    1. Desinstalar los drivers de la gráfica antigua.
    2. Realizar una limpieza de los registros que hayan podido dejar los drivers antiguos e incompatibles al ser de otro fabricante.
    3. Sustitución de una tarjeta por otra en el equipo.
    4. Instalar los drivers de la tarjeta nueva (Raramente suele ser necesario reinstalar el Sistema Operativo).
  5. Otras tarjetas (Ej: Sonido, Red, TV,…) siguen un proceso similar al de las tarjetas gráficas.
  6. Unidades ópticas (Lector o Grabadora DVD): En caso de avería en principio basta con sustituir una por otra y poco más si acaso actualizar el programa de grabación si este es antiguo y no reconoce la grabadora nueva (No suele ser necesario reinstalar el Sistema Operativo).
  7. Fuente de alimentación: Si únicamente hay que cambiar una fuente por otra la reparación no es muy costosa, el mayor problema que se puede presentar es que al averiarse la fuente, esta se “lleve” con ella algún/algunos componente/s lo cual puede aumentar considerablemente el coste de la reparación.
  8. Pila de BIOS: Las placas base llevan una pila de botón/plana (Generalmente de tipo CR2032) que pasado unos años acaba agotandose, la función de esta pila es guardar los valores de configuración de la BIOS, en caso de que no los guarde suelen aparecer algunos errores en el arranque y con el uso del Sistema Operativo (Uno muy frecuente es que la hora esta equivocada aunque el usuario la corrija).
  9. Otra avería bastante frecuente y que suele aparecer con el paso del tiempo es la acumulación de polvo en los sistemas de refrigeración (Disipadores y ventiladores) del ordenador, esta acumulación de polvo y pelusas hace que el rendimiento de los sistemas de refrigeración se reduzca bastante y puedan producirse inestabilidad en el uso del equipo (Bloqueos, Reinicios, Apagados del equipo). En csaso de tener que sustituir los sistemas de refrigeración el coste de la reparación puede aumentar ligeramente.

En el caso de equipos muy antiguos (Con varios años de uso) posiblemente sea mejor opción comprar un equipo nuevo de bajo coste si las necesidades del usuario no son excesivas (Ofimática, Internet, Reproducción Multimedia,…), en caso de necesitar un equipo para un uso más especializado (Ej: Juegos, Edición de Video, Máquinas virtuales, Reproducción de video en Alta Definición con alta calidad,…) es mejor opción comprar un equipo de gama media/alta que aunque sea más caro ofrecera mayor rendimiento (Lo que se traduce en menor tiempo de ejecución de procesos o bien en la posibilidad de poder ejecutar procesos de una forma más o menos “fluida”, cosa que con un equipo de bajo coste posiblemente no sea posible ya que aunque puede ejecutar los procesos posiblemente se “atasque” al no tener los recursos (Procesador (CPU), RAM, Gráfica (GPU),… necesarios; esto suele pasar sobre todo en juegos en los que suele ser más aconsejable tener en cuenta los requisitos recomendados en lugar de los requisitos mínimos).

En cuanto a Software la avería más habitual y costosa suele ser la reinstalación del Sistema Operativo ya que suele implicar:

  • Comprobación de hardware (Disco duro, RAM,…) para eliminar algún posible fallo de hardware que afecte al software (Sistema Operativo y programas).
  • Copia de seguridad de los datos de usuario si sólo hay una partición (Suponiendo que el usuario no haya hecho una copia de segurida de sus datos previamente).
  • Reinstalación de Sistema Operativo (Incluyendo creación de particiones y configuración del Sistema).
  • Reinstalación de los drivers (Controladores) de los dispositivos (Chipset placa base, Tarjeta gráfica, Tarjeta de sonido, Tarjeta de Red, Impresora,…).
  • Reinstalación de los programas utilizados por el usuario.
  • Restauración de los datos de usuario.

Breve historia del Socket de CPU


Mucho ha llovido desde que Intel sacó sus primeros procesadores comerciales hasta los nuevos Core i5, Core i7 y Core i9 más actuales, inicialmente el procesador iba soldado a la placa base por lo que no era posible actualizarlo; para sustituir el procesador por un modelo más actual con mejores prestaciones, había que cambiar la placa base completa; sin embargo esto se solucionó en parte con aparición de los Socket que permitieron sustituir el procesador por un modelo más actual siempre y cuando fuese compatible con la placa base y el Socket (Zócalo de CPU: Central Processing Unit, Unidad Central de Procesamiento), existieron dos tipos:

Slot: Este formato se utilizó entre 1997 y 2000 aproximadamente sustituyendo a los Socket anteriores (Ej: Socket 7), el procesador se insertaba dentro de dos guías como si fuese una tarjeta de expansión de la placa base) lo utilizaron los:

  • Pentium II y primeros Pentium III (Usaron el Slot 1), apareció en 1997.
  • Xeon (Emplearon el Slot 2), apareció en 1998.
  • AMD Athlon (Utilizaban el Slot A que es similar al Slot 1 de Intel), apareció en 1999.

Socket: Actualmente los procesadores utilizan un sistema ZIF (Zero Insertion Force) que para insertar el procesador en el Socket de la placa base no es necesario hacer ningún tipo de presión sobre él, basta con levantar la palanca que hay al lado del Socket y poner el procesador en la posición correcta, el cual sólo entra en una posición, una vez insertado el procesador sólo hay que bajar la palanca para que el procesador se quede anclado en el Socket (Los modelos más antiguos como fue el caso del Socket 1 usaban el sistema LIF: Low Insertion Force, que carecía de dicha palanca y por lo tanto requerían ejercer una cierta presión para insertar el procesador dentro del Socket).

Por otra parte el diseño de tipo Socket puede ser de dos tipos:

  • PGA (Pin Grid Array): Se ha utilizado hasta hace poco tiempo en la mayoria de los procesadores, de hecho procesadores actuales como los Athlon 64 en Socket AM2, AM2+ y AM3 utilizan este diseño. En este caso el procesador tiene los pines y el Socket de la placa base tiene los contactos donde se conectan dichos pines.
  • LGA (Land Grid Array): Actualmente lo utiliza Intel en sus procesadores más actuales, desde el Socket 775 en adelante (Incluyendo los actuales Socket 1156 y 1366). En este caso el procesador tiene los contactos, mientras que el Socket de la placa base tiene los pines.

Algunos de los socket más conocidos de Intel:

Actualmente descatalogados:

  • Socket 7 (1994): Con 321 pines, de los primeros Pentium/Pentium MMX y de los AMD K5.
  • Socket 370 FC-PGA/FC-PGA2 (1999): Tiene 370 pines, de los Pentium III y Celeron, destacando los cores “Coppermine” y “Tualatin” que fueron los últimos en utilizarlo.
  • Socket N, también conocido como Socket 478 ó mPGA478 (2000): Con 478 pines, hasta poco el socket de los Pentium 4 y Celeron, destacando el core “Northwood”, anterior al “Prescott”.
  • Socket 604 (2002): Utiliza 604 pines de Intel Xeon, son procesadores para servidores.

Actualmente en uso:

  • Socket T, también conocido como Socket LGA (Low Grid Array) 775/Socket 775 (2004): Con 775 pines, de los Pentium 4 tanto en single core (“Prescott”) como en Dual Core (“Smithfield”, que son dos cores “Prescott” en un mismo procesador) y Celeron con core “Prescott”, este mismo Socket lo utilizan también los Core 2 Duo/Quad actuales, dependiendo del chipset puede soportar memoria DDR, DDR2 o incluso DDR3 si es de los últimos. Este Socket esta destinado a la extinción ya que ha sido sustituido por el Socket 1156 y 1366 que son los actuales para procesadores de sobremesa.
  • Socket J, también conocido como Socket LGA (Low Grid Array) 771/ Socket 771 (2006): Utiliza 771 pines, Lo utilizan algunos Xeon, esta en extinción.
  • Socket 1.156/LGA (Low Grid Array) 1.156 (2009): Tiene 1.156 pines, lo utiliza  el actual Core i5 750 y los Core i7 860 y 870, soporta DDR3.
  • Socket B, también conocido como Socket LGA (Low Grid Array) 1366/Socket 1.366 (2008): Con 1.366 pines, lo utilizan los Core i7 920 en adelante y los Xeon W35xx, E55xx, L55xx y X55xx, soporta DDR3.

Socket 775

Algunos de los socket más conocidos de AMD (Advanced Micro Devices):

Actualmente descatalogados:

  • Socket A/Socket 462 OPGA (2000): Con 462 pines de la serie K7 (Los Athlon64/Opteron son los K8 o superior), más conocidos como Athlon entre ellos destacan los Athlon core “Thunderbird” y los Athlon XP (Especialmente los cores “Thoroughbred B” y “Barton” que fueron los últimos en comercializarse). También a esta serie pertenecen los Duron (Competidores de los Celeron de Intel, uno de los últimos cores Duron fue el “Appalbred”) y los últimos Sempron (core “Thoroughbred B” y “Barton”).
  • Socket 754 (2003): Utiliza 754 pines de los Sempron (Core “Palermo”) y Athlon 64 (Core “Clawhammer”) entre otros.
  • Socket 940 (2003): Con 940 pines de los Opteron series 2xx y 8xx (Son procesadores para servidores).
  • Socket 939 (2004): Tiene 939 pines de los Athlon 64 (Destacando el core “Venice”/”San Diego” en single core, y los “Manchester”/”Toledo” en Dual Core) y algunos Opteron core “Venus” (Single core) y “Denmark” (Dual Core).

Actualmente en uso:

  • Socket AM2 (2006): Tiene 940 pines (Es incompatible con el Socket 940 anterior), soporta DDR2, actualmente está en uso aunque será desplazado en breve por el AM2+ y AM3, lo han utilizado los Athlon 64 x2 “Brisbane”.
  • Socket AM2+ (2007): Con 940 pines (Es incompatible con el Socket 940 anterior), soporta DDR2 y DDR3 ha sido un Socket de “transición” entre DDR2 y DDR3, lo han empleado los Athlon X2 “Kuma” y los Phenom “Agena” y Phenom II “Deneb”.
  • Socket AM3 (2009): Utiliza 941 pines, soporta únicamente DDR3, se utiliza en los procesadores Ahlon K10 más actuales como por ejemplo: Athlon II x2 “Regor”, Athlon II x3 “Rana”, Athlon II x4 “Propus”, Phenom x3 “Heka” y Phenom x4 “Deneb”.

Socket AM3

Hay que tener en cuenta que el que una placa base disponga de un Socket actual (Ej: Socket 775) no significa que se pueda actualizar el procesador ya que el Socket sólo determina el sistema físico de enganche entre el procesador y la placa base, pero además el procesador debe ser compatible en especificaciones técnicas con la placa base (FSB, voltaje del procesador (vCore), TPD (Thermal Design Power), Conectores de alimentación,…), en algunos casos puede ser necesario una actualización de BIOS para compatibilizar el procesador con la placa base, en otros casos por el contrario aún actualizando la BIOS es posible que el procesador sea incompatible, por ejemplo si tenemos una placa base con soporte FSB800 (200 x4) y el procesador tiene FSB1066 (266 x4) el procesador muy probablemente no funcionara (Esto mismo ocurrió con el Socket A/Socket 462 de AMD donde los procesadores llegaron a tener FSB200/DDR400, pero algunas placas antiguas sóportaban un FSB133/DDR266 ó FSB166/DDR333), por esta razón los fabricantes de placas base ponen a disposición de los usuarios lista de compatibilidad de procesadores para saber si un procesador es compatible o no con la placa base en cuestión.

Por otra parte hay que tener en cuenta que los procesadores de equipos portátiles utilizan también sus propios Socket que suelen ser de menor tamaño que los de los procesadores equipos de sobremesa.

Se puede encontrar más información en:

Guía para comprar un disipador de tarjeta gráfica (GPU)


Hace unos días en esta entrada comente las características de un disipador de procesador (CPU), en la entrada de hoy comentare las características de los disipadores de las tarjetas gráficas o GPU (Graphics Processing Unit, Unidad de Procesamiento Gráfico), los cuales  no siempre son los mas “adecuados” en algunos casos a pesar de refrigerar las piezas correctamente suelen ser ruidosos. También decir que cualquier manipulación de las piezas a nivel físico (Por ejemplo: Cambiar disipadores o añadirlos) puede anular la garantía de la pieza en cuestión puesto que se esta haciendo una modificación física por ello no es muy aconsejable usar pegamentos como por ejemplo:

  • Artic Adhesive, Adhesivo Zalman o pegamento similar que incluye la pasta térmica.
  • Loctite/SuperGlue3 o similar (Cianocrilato) en las esquinas con pasta térmica en el centro del core).

Si la pieza esta en garantía ya que quitar las piezas añadidas es prácticamente imposible y se vería dicha manipulación.

Los sistemas de refrigeración de las tarjetas gráficas actuales generalmente se limitan a un “simple” disipador tipo Orb (Un ventilador redondo en muchos casos algo ruidoso junto con un disipador metálico (Aunque en algunos casos existen modelos de gama baja que únicamente llevan un disipador pasivo de aluminio sin ventilador, lo cual es de agradecer ya que nos ahorramos una fuente de ruido a largo plazo) generalmente de aluminio) o bien algún sistema algo mas complejo por aire (Raramente se recurre a sistemas complejos con heat pipes como los que proponen algunos fabricantes, salvo en modelos de gama media y alta); dejando a un lado los “microdisipadores” tipo ORB y similares) se puede hacer una “clasificación”:

Al igual que ocurre con los ventiladores de los disipadores de CPU, los disipadores de GPU con refrigeración activa (Con ventilador) pueden llevar un ventilador integrado (Ej: Zalman VF950Led, Zalman Z-Machine GV1000, Thermaltake DuOrb AX,…) o bien llevar un ventilador independiente como ocurre con los Thermalrigth, en este último caso la sustitución del ventilador en caso de fallo es muy sencilla ya que basta con buscar un ventilador de tamaño y prestaciones (CFMs) similares, mientras que en el caso de los ventiladores integrados su sustitución es más complicada ya que hay que recurrir al “bricolaje” para poder adaptar un ventilador.

Por otra parte para la zona del FET (Field-Effect Transistor, Transistor de Efecto Campo) existen otras soluciones pasivas (Sin ventilador) como por ejemplo:

También parece ser que con la aparición de graficas PCI Express muchas han sido convertidas a AGP con un chip puente que hay que refrigerar también por lo que la refrigeración de estos modelos es más complicada debido a que no solo hay que refrigerar la GPU (chipset gráfico) como ocurre con los modelos PCI Express o AGP “nativos” sino que además en los modelos PCI Express convertidos a AGP es necesario refrigerar el chip puente; creo que actualmente las soluciones para estos modelos son bastante limitadas un ejemplo es el Zalman ZM-VHS1 para las GF6600 AGPlo cual puede facilitar el cambio de un disipador de fábrica si este no fuese el más adecuado.

Por último comentar que existen algunos modelos de tarjetas gráficas (Suelen ser de gama media o baja, ya que los modelos de gama alta suelen llevar sistemas de refrigeración activos con ventilador) que llevan de fábrica un disipador pasivo con heat pipes y una disipación activa “silenciosa” como por ejemplo:

Una cosa que siempre hay que tener en cuenta para todos estos casos es que el modelo de disipador de Tarjeta gráfica (GPU) elegido, debe ser compatible con la pieza en cuestión ya que no siempre lo son, para ello se pueden ver las listas de compatibilidad que suelen tener los propios fabricantes sobre cada modelo, de esta forma se evitan sorpresas desagradables.

Guía para comprar un procesador (CPU), no son sólo Mhz lo que cuenta


Procesadores (CPU)

Actualmente existen en el mercado doméstico varios fabricantes de procesadores de arquitectura x86 de 32 Bits (Información de Wikipedia), actualmente arquitectura x86-64 de 64 Bits (Información de Wikipedia), aunque los sistemas operativos actuales (ej: Windows XP, Windows Vista y algunas distribuciones Linux son de 32 Bits):

Actualmente ambos fabricantes (Intel y AMD) ofrecen productos de buena calidad (Via actualmente esta más centrada en procesadores para portátiles y equipos de tamaño ultra reducido de bajo consumo), sin embargo para evaluar el rendimiento de un procesador (CPU: Central Processing Unit, Unidad Central de Proceso/Procesamiento) hay que tener en cuenta:

  • La frecuencia de funcionamiento (Megahercios (MHz), aunque actualmente los procesadores funcionan a varios Gigahercios (GHz)): A igualdad de marca/modelo (Y Arquitectura) uno con más MHz será algo más rápido que otro, por ejemplo un Core 2 Duo E8600 (3,33 GHz x2, FSB1333 y 3.072 KB x2, ronda los 250 €)  tendrá un rendimiento algo mejor que un E8400 (3 GHz x2, FSB1333 y 3.072 KB x2, ronda los 160 €), pero hay que tener en cuenta que los MHz no son la única variable a tener en cuenta (Otra cosa es que compense la diferencia de precio que es otro factor a tener en cuenta) ya que cuando se comparan arquitecturas diferentes (ej: Pentium 4 vs. Core 2 Duo/Quad vs. Athlon64 vs. Phenom/Phenom II) los MHz no son sólo el único indicador de rendimiento, ya que interevienen otros factores como por ejemplo:
    • FSB (Front Side Bus, Bus de la Parte Frontal):  Conecta el procesador (CPU) con el chipset (Northbridge y Southbridge) de placa base (Motherboard o Mainboard), a mayor FSB mayor rendimiento. Actualmente el FSB se está sustituyendo por otros buses más eficientes como:
      • El Hyper Transport (HTT) de AMD, lo comenzaron a implementar los primeros Athlon 64 basados en los Athlon K8.
      • El QuickPath Interconnect (QPI) de los Intel Core i7 y futuros procesadores derivados de ellos (Los Core 2 Duo/Quad utilizan el FSB como medio de comunicación entre el procesador y el Chipset de placa base).
    • Memoria cache: Sirve para almacenar datos, es una memoria de alta velocidad de las más caras que existen el mercado informático y que no puede ampliarse salvo que se cambie el procesador por uno mejor, la memoria cache se divide en varios niveles:
      • L1: Su capacidad suele ser “escasa” entre 64 y 256 KB, esta dividida en dos zonas, una para intrucciones y otra para datos.
      • L2: Tiene mayor tamaño que la L1, no esta dividida se usa para programas, a mayor capacidad mayor rendimiento en principio, aunque también depende de la arquitectura del procesador (Por ejemplo los Pentium 4 podían tener hasta 2 MB L2 por core, mientras que los Athlon64 solían tener entre 512 y 1 MB L2 por core, en el caso de los Athlon x2 (Dual Core) estos tenían mejor rendimiento que los Pentium 4 Dual Core).
      • L3:  Es poco frecuente en procesadores domésticos, aunque los Core i7 y algunos Phenom la implementan, por lo que es de suponer que en futuros procesadores domésticos sea implementada. A mayor capacidad mayor rendimiento en principio, aunque también depende de la arquitectura como he comentado antes con la L2.
      • L4: Se utiliza en procesadores de entornos profesionales (ej: Intel Itanium).
    • Número de núcleos o cores: Actualmente existen en el mercado varios tipos de procesadores que según su número de núcleos físicos pueden clasificarse como:
      • Monocore: Son procesadores de un sólo núcleo, actualmente estan en extinción ya que los Dual Core y Quad Core estan abaratando su coste de fabricación y tienen mejor relacion precio/prestaciones para el usuario medio.
      • Dual Core: Son procesadores con dos núcleos, son una buena opción para multitarea ya que permite ejecutar dos tareas (Procesos o Programas) de forma simultánea, o en el caso de que la aplicación que utilicemos sea capaz de usar ambos núcleos de forma simultánea para aumentar el rendimiento, reduciendo así el tiempo de proceso/ejecución de la aplicación.
      • Tricore: Son procesadores con tres núcleos (Actualmente solo dispone de estos modelos AMD con los Phenom x3), en multitarea pesada o en aplicaciones que usen varios cores de forma simultanea es donde se sacar el mayor partido.
      • Quad Core: Son procesadores con 4 núcleos, sólo son “útiles” si se hace uso de una multitarea intensiva o bien se utilizan aplicaciones que aprovechen todos los núcleos de forma simultánea.
  • Intrucciones: Los procesadores actuales implementan una serie e intrucciones que mejoran su rendimiento en ciertos ámbitos, como por ejemplo:
    • Multimedia:
      • Intel: MMX, SSE,  SSE2, SSE3, SSE4a, SSE 4.1, SSE 4.2.
      • AMD: Enhanced 3DNow!
    • Virtualización de sistemas operativos por hardware (Información de Wikipedia):
      • Intel: Intel V (Intel VT).
      • AMD: AMD-V (AMD Virtualization, también denominada Pacífica).
    • Seguridad en ejecución de datos (Bit NX y Trusted Platform Module (Información de Wikipedia en inglés):
      • Intel: XD Bit (Bit NX), TXT (Trusted Execution Technology) un módulo TPM para DRM (Digital Rights Management) de Gestión de Derechos Digitales (Información de Wikipedia).
      • AMD: NX-Bit (Bit NX), Presidio (Módulo TPM para DRM)
    • Ahorro energético:
    • Otras:
      • Intel:
        • Intel 64 (antes Intel EMT64): Instrucciones de 64 Bits.
        • Smart Cache (Implementado en los Core i7, información de Intel):
        • Turbo Boost (Implementado en los Core i7): Permite aumentar de forma dínamica la frecuencia del procesador en función del número de procesadores activos.
        • HD Boost (Implementado en los Core i7): Optimiza aplicaciones multimedia.
        • HyperThreading (HT): Implementado en los Core i7 (Y en los últimos Pentium 4 monocore o de un sólo núcleo) permite simular un segundo core lógico por cada core físico, es decir que en un Core i7 que es Quad Core habría 4 cores/núcleos físicos pero 8 cores lógicos (4 cores físicos más 4 cores lógicos), hay que tener en cuenta que la tecnología HT puede mejorar el rendimiento en aplicaciones que aprovechen todos los cores, sin embargo en otras aplicaciones puede que la mejora de rendimiento sea escasa o nula.
      • AMD:
        • AMD64: Instrucciones de 64 Bits.

Según la generación del procesador y la marca/modelo pueden llevar unas instrucciones u otras, por ejemplo las instrucciones de AMD como 3DNow! y variantes sólo las utilizan los AMD (Intel no las implementa), lógicamente los procesadores más actuales implementan mayor número de instrucciones mejorando algo el rendimiento en ciertas aplicaciones.

En función de las caracteristicas del procesador (Principalmente FSB y Memoria Cache) este recibe un nombre comercial, por ejemplo actualmente en:

  • Intel:
    • Los Celeron son la gama baja, utilizan Socket 775.
    • Los Pentium Dual Core (Derivados de los Core 2 Duo) son la gama media-baja (Los Intel Pentium 4 estan en “extinción” ya que tienen peor rendimiento que los Core 2 Duo), utilizan Socket 775.
    • Los Core 2 Duo/Quad son la gama media-alta, utilizan Socket 775.
    • Los Core i3 (Saldrán a la venta próximamente ocupando la gama media y baja, utilizaran el Socket 1156 que es incompatible con el antiguo Socket 775 y con el nuevo Socket 1366 de los Core i7 actuales.
    • Los Core i5 (Saldrán a la venta próximamente y sustituiran de forma progresiva a los Core 2 Duo/Quad actuales) serán la gama media-alta, utilizaran el Socket 1156 que es incompatible con el antiguo Socket 775 y con el nuevo Socket 1366 de los Core i7 actuales.
    • Los Core i7 son la gama alta actual, utilizan Socket 1366 que es diferente al antiguo Socket 775.
    • Los Core i9  (Saldrán a la venta próximamente y sustituiran de forma progresiva a los Core i7 actuales, serán la futura gama media-alta, utilizaran el Socket 1366 que es incompatible con el antiguo Socket 775 y con el futuro Socket 1156 de los próximos Core i3 e i5).
  • AMD (Actualmente tiene varios Socket en el mercado, AM2 (Soporta sólo DDR2) está en extinción, AM2+ (Soporta DDR2 ó DDR3) susitituye al anterior socket, y Socket AM3 (Soporta DDR3) que es más actual):
    • Los Sempron son la gama baja.
    • Los Athlon x2 y Phenom x2 (Los actuales son derivados de los Phenom) son la gama media.
    • Los Phenom x3 (Tricore) y x4 (Quad Core) son la gama media y alta actual.

Otros parametros de los procesadores que no son tan conocidos pero si pueden ser importantes para tenerlos en cuenta son:

  • El Socket o Zócalo del Procesador (Información de Wikipedia): Se puede decir que es el tipo de enganche que tiene el procesador con la placa base, de tal forma que Socket físicamente diferentes no son compatibles entre sí por ejemplo un procesador Intel con Socket 775 no se puede instalar en una placa base de AMD con Socket 939, aunque a veces han existido adaptadores para instalar procesadores del mismo fabricante en Socket diferentes como fue el caso de los adaptadores de Slot1 a Socket370 de los Pentium III. Por lo tanto el Socket determina la posibilidades de ampliación/actualización del equipo, por ejemplo si tenemos un procesador actual como los Pentium 4 en Socket 775 es posible que podamos actualizar el procesador a un Core 2 Duo al menos con FSB800 (Los últimos funcionan con FSB1066 y FSB1333), aunque esto depende en gran parte del soporte (Revisiones de BIOS) que el fabricante haya dado a nuestra placa base.
  • Stepping: Se puede decir que es la revisión del procesador, es decir que un procesador llamandose “igual” puede tener revisiones diferentes, por ejemplo los Core 2 Quad Q6600 G0 generalmente eran mejores que los Q6600 B3, estos últimos eran procesadores anteriores, aunque ambos modelos (Q6600 G0 y B3) tenían las mismas prestaciones (Mhz, FSB, Cache,…)
  • Proceso de fabricación: Actualmente se miden en nanómetros (nm), a menor tamaño en principio mayores prestaciones (Menor consumo, Menor calentamiento, Mayor memoria cache,…), por ejemplo actualmente los procesadores son de 65 ó 45 nm según la marca/modelo, y el próximo “salto” serían los 32 nm.
  • TPD (Thermal Design Power o Thermal Design Point): Especifíca la máxima cantidad de calor que debe disipar el sistema de refrigeración del procesador (Información de Wikipedia), por ejemplo:
    • Intel Pentium 4 de 3 GHz FSB800 con 1 MB L2 core “Prescott” de 90 nm, tiene un TPD de unos 101,4 watios utilizando el Socket 478 (Los modelos con Socket 775 tenían un TPD similar), lo cual es bastante e implica la utilización de sistemas de refrigeración adecuados.
    • Intel Core 2 Duo E7500 (2,93 GHz x2, FSB1066 y 1,5 MB L2 x2) core “Wolfdale” de 45 nm, tiene un TDP medio de 65w en Socket 775, según se comenta este TDP no es el máximo del procesador sino el “medio” aun asi el TDP de la arquitectura Core 2 Duo/Quad es menor que el de los Pentium 4 “Prescott”.
    • Intel Core 2 Quad Q9550 (2,83 Ghz x4, FSB1333 y 6 MB x2) core “Yorkfield” de 45 nm, tiene un TPD de 95w en Socket 775.
    • Intel Core i7 920 (2,66 Ghz x4, 4.800 MT/seg y 256 KB L2 x4 + 8 MB L3) core “Bloomfield” de 45 nm, tiene un TPD de 130w en Socket 1366. Se puede decir que el procesador estrella actual de Intel tiene un TPD muy elevado lo que implica tener que invertir en un sistema de refrigeración adecuado.
    • AMD Athlon x2 5050e (2,6 Ghz x2, 2.000 Mhz HTT, 512 KB L2 x2) core “Brisbane EE” de 65 nm, tiene un TPD de 45w, en Socket AM2. Su bajo TPD lo hace ideal para equipos de bajo consumo aunque ya tiene su tiempo en el mercado.
    • AMD Athlon II x2 250 (3 Ghz x2, 4.000 Mhz HTT, 1.024 KB L2 x2) core “Regor” de 45 nm, tiene un TPD de 65w, en Socket AM3. Aunque su TPD es algo superior al 5050e puede ser una buena opción para equipos de bajo consumo.
    • AMD Phenom II X2 550 (3,1 Ghz x2, 4.000 Mhz HTT, 512 KB L2 x2 y 6 MB L3), core “Callisto” de 45 nm, tiene un TPD de 80w, en Socket AM3.
    • AMD Phenom II X3 705e (2,5 Ghz x3, 4.000 Mhz HTT, 512 KB L2 x3 y 6 MB L3), core “Heka” de 45 nm, tiene un TPD de 65w, en Socket AM3. Podría ser una opción para equipos que busquen un equilibrio entre prestaciones y consumo siempre y cuando se aprovechen los tres cores.
    • AMD Phenom II X3 720 (2,8 Ghz x3, 4.000 Mhz HTT, 512 KB L2 x3 y 6 MB L3), core “Heka” de 45 nm, tiene un TPD de 95w, en Socket AM3.
    • AMD Phenom II X4 905e (2,5 Ghz x4, 4.000 Mhz HTT, 512 KB L2 x4 y 6 MB L2), core “Deneb” de 45 nm, tiene un TPD de 65w, en Socket AM3. Podría ser una opción para equipos que busquen un equilibrio entre prestaciones y consumo siempre y cuando se aprovechen los cuatro cores.
    • AMD Phenom II X4 955 (3,2 Ghz x4, 4.000 Mhz HTT, 512 KB L2 x4 y 6 MB L3), core “Deneb” de 45 nm, tiene un TPD de 125w, en Socket AM3. Teniendo en cuenta que su TPD es similar al de los Core i7 (Rondan los 130w) habría que tener en cuenta el sistema de refrigeración.
  • Voltaje del procesador (vCore): Es el voltaje que recibe el procesador para funcionar, en principio a igualdad de modelo cuanto menor es menor TPD debería tener, a mayor voltaje mayor TPD.
  • Arquitectura interna: Define en gran medida el rendimiento final del procesador (CPU), por ejemplo:
    • La arquitectura de los Intel Pentium 4 (Arquitectura Netburts) supuso un cambio en la concepción de los procesadores de Intel, dando importancia a los “Mhz”, posteriormente con los Core 2 Duo/Quad (Arquitectura Conroe) Intel “olvido” los Mhz para centrarse en el rendimiento, de hecho se puede decir que los Core 2 Duo/Quad son una evolución de los últimos Pentium III core “Tualatin” y Procesadores Centrino (Pentium M).
    • La arquitectura de los AMD Athlon K8 (Y actuales K10) han sido una evolución de los antiguos Athlon K7, por lo que la mejora de rendimiento aunque es grande, no es tan significativa como en el caso de Intel y los Core 2 Duo/Quad.
  • Núcleo (También denominado Core): Hace referencia al nombre en clave del procesador por ejemplo los últimos Core 2 Duo/Quad de 45 nm son “Wolfdale/Yorkfield”, mientras que los últimos AMD Phenom II x4 son “Deneb” (Los X3 son “Heka” y los X2 son “Regor” o “Callisto” segun el modelo).
  • IPC (Instructions Per Clock/Cycle, Intrucciones Por Ciclo): Determina en gran parte el rendimiento del procesador, la arquitecturas actuales (Intel Core 2 Duo/Quad y AMD Athlon/Phenom) se basan en un alto IPC con pocos Mhz, es decir que pueden procesar muchas intrucciones por ciclo, mientras que otras arquitecturas anteriores (ej: Intel Pentium 4) tenía muchos Mhz pero pocas intrucciones por ciclo, en este enlace de Agalisa (Comparan un Pentium 4 con un Athlon K7) se puede encontrar algo de información más detallada, así mismo en Wikipedia (en inglés) hay algo más de información sobre el IPC.

Se puede encontrar más información sobre las características de los procesadores (CPU) en:

Procesador Matemático de Física (AGEIA), actualmente integrado en nVidia mediante CUDA


El mercado de tarjetas gráficas se renueva constantemente sacando nuevos modelos con intervalos de tiempo muy pequeños, que superan a los modelos anteriores equivalentes, sin embargo los Gamers siempre “piden” más potencia gráfica para poder jugar con mayor nivel de detalle y realismo a los juegos más actuales.

Parece ser que el procesador matemático AGEIA PhysX aumentará el rendimiento en juegos, este procesador AGEIA es una PPU (Physics Processing Unit, Unidad de Proceso Físico) esta especializado en cálculos de física esto incrementaría la capacidad de los videojuegos para simular la realidad (movimientos corporales, líquidos, fuego, pelo, …) de de esta forma la CPU podrá esta libre de procesar cálculos matemáticos, dedicándose a otras tareas (ej: mejorar la IA (Inteligencia Artificial) de los personajes enemigos); sin embargo para que los juegos (principales beneficiados de esta PPU) funcionen deberán ser compatibles.

El bus de conexión de esta tarjeta será en un principio tanto PCI como PCI Express (PCIe), con 128 Mb de memoria GDDR3 y una toma de corriente (un conector molex de 4 pines de fuente) adicional para alimentarla (esto último también ocurre con muchas tarjetas gráficas de gama media/alta), así mismo parece ser que su refrigeración sera activa, es decir usar un disipador con un ventilador.

Actualmente las tarjetas AGEIA no se encuentran en el mercado porque hace un tiempo que nVidia compro Ageia, y ha implementado la tecnologia de AGEIA mediante CUDA (Compute Unified Device Architecture) que se basa en un lenguaje de programación C para codificar algunos algoritmos que ejecutan las GPU (Graphics Processing Unit, Unidad de Procesamiento Gráfico) o Procesador Gráfico. Las tarjetas gráficas de nVidia con CUDA son:

  • Serie GeForce 8000.
  • Serie GeForce 9000.
  • Serie GTS/GTX actual.
  • Serie Quadro (Son tarjetas de uso profesional para uso 3D).
  • Serie Tesla (Son tarjetas de uso profesional dedicadas a la aceleración de cálculos que utilizan CUDA).

Las versiones anteriores (ej :GF Serie 7000 y 6000 no tienen soporte).

Hay más información en:

Así mismo existe otra tecnología interesante denominada Raytracing, que también se implementa por hardware en una FPGA que funciona a 90Mhz y es entre 3 y 5 veces más rápida que un Pentium 4 a 2.7Ghz. El Raytracing es una técnica que permite obtener imágenes 3D generadas por ordenador basándose en el comportamiento de la luz al incidir en un objeto generando reflexiones, refracciones,… según el caso.

Más información sobre Raytracing:

Así mismo existe otra propiedad, la Radiosidad que es la dispersión (reflexión) de la falta de luz en las superficies difusas, convirtiendo dichas superficies en fuentes de luz indirecta.

Más información sobre Radiosity: