Tarjetas Gráficas con Overclock de fábrica ¿Son aconsejables?


En un post anterior comente el tema de las tarjetas gráficas pasivas de fábrica (Sin ventilador) que son una buena opción para aquellos que busquen silencio e incluso para equipos “gamers” de gama media (Actualmente las tarjetas gráficas pasivas son modelos de gama “media” como la nVidia GTS 450 y las Ati HD 7750).

En este post comentare algunas de las tarjetas gráficas que actualmente se comercializan con overclock de fábrica (El overclock (También abreviado como OC) consiste en aumentar la frecuencia (Mhz) de funcionamiento de un componente (CPU, GPU, Memoria,…) aunque si no se hace correctamente puede estropear el componente en cuestión; de hecho el overclock invalida la garantía del producto si lo realiza el usuario por su cuenta y riesgo).

En el caso de las tarjetas gráficas suele aumentarse la frecuencia (Mhz):

  • Del Procesador Gráfico (GPU) o “Core”.
  • De los Shaders (Unidades de Sombreado)
  • De la Memoria de vídeo.

Esto hace que el redimiento gráfico de una tarjeta con overclock de fábrica sea algo mejor que el de un modelo de serie (En GPUReviews se pueden comparar las especificaciones de dos tarjetas diferentes, y en Video Card Benchmark hay una clasificación de tarjetas en función de los puntos que obtienen en el Benchmark (Test de rendimiento) Performance Test de PassMark Software)

Las ventajas de una tarjeta con overclock de serie principalmente son:

  • Mayor rendimiento gráfico frente al mismo modelo sin overclock.
  • Mejor sistema de refrigeración, normalmente los modelos con overclock usan sistemas mucho mejores que los de referencia de los fabricantes.
  • Componentes de mayor calidad al tener overclock de fabrica los componentes suelen ser de mejor calidad ya que deben soportar una mayor frecuencia (Mhz) de trabajo.
  • Por otra parte en caso de vender la tarjeta de segunda mano, para un comprador seguramente sea más “interesante” comprar una tarjeta con “overclock” de fabrica que un modelo “normal” ya que el modelo con overclock proporciona algo más de rendimiento que el mismo modelo de serie.

Las tarjetas con overclock suelen ser de gama media/alta ya que en la gama baja (Ej: Ati HD7450 o GF610) no tienen sentido ya que no están orientadas al sector “Gamer” y su rendimiento esta enfocado a ofimática y múltimedia (Reproducción de audio/vídeo).

Tarjeta gráfica nVidia GTX560 (Modelo de referencia)

Tarjeta gráfica nVidia GTX560 Ti (Modelo de referencia)

Algunos modelos actuales de gama media/alta (nVidia GeForce GTX 560 Ti y AMD Radeon HD 7850) con overclock de serie son:

nVidia GTX 560 Ti (Se compara el modelo con frecuencias de referencia respecto al modelo con overclock, buscando el modelo con mayor overclock disponible por parte del fabricante, ya que muchos tienen modelos intermedios), aunque la GTX 560 Ti será sustituida en un futuro cercano por la nueva GTX 660 Ti ya que nVidia esta renovando la serie GTX5xx por la nueva serie GTX6xx:

Gigabyte GV-N560SO-1GI (Super Overclock)

Gigabyte GV-N560SO-1GI (Super Overclock)

Asus ENGTX560 Ti DC2 Top/G/2DI/1GD5

Asus ENGTX560 Ti DC2 Top/G/2DI/1GD5

MSI N560GTX-Ti Hawk

MSI N560GTX-Ti Hawk

  • Zotac GTX 560 Ti: 822/1.645/2.000 (4.000 Mhz efectivos) Mhz Core/Shaders/Memoria, con 1 GB GDDR5.
  • Zotac GTX 560 Ti AMP! Edition: 950/1.900/2.100 (4.200 Mhz efectivos) Mhz Core/Shaders/Memoria, con 1 GB GDDR5 (Ronda los 280 € aproximadamente).
Zotac GTX 560Ti  AMP! Edition

Zotac GTX 560Ti AMP! Edition

Además de estos fabricantes muchos otros como:

EVGA:

Gainward

Sparkle:

Club3D:

Galaxy:

  • GTX 560 Ti: 835/1.670/2.000 (4.000 Mhz efectivos) Mhz Core/Shaders/Memoria con 1 GB de memoria GDDR5.
  • GTX 560 Ti White Edition: 950/1.900/2.200 Mhz (4.400 Mhz efectivos) Core/Shaders/Memoria con 1 GB de memoria GDDR5.
  • GTX560 Ti SOC White Edition: 950/1.900/2.200 (4.400 Mhz efectivos) Mhz Core/Shaders/Memoria con 1 GB de memoria GDDR5.

También tienen GTX 560 Ti con overclock de serie.

Por otra parte también existen AMD Radeon HD7850 (En principio AMD mantendrá esta serie una temporada ya que se ha comercializado recientemente sustituyendo a la antigua serie HD 6xxx):

Sapphire HD7850 OC

Sapphire HD7850 OC

Club3D HD7850 Royal King (CGAX-7856O)

Club3D HD7850 Royal King (CGAX-7856O)

HIS HD7850 IceQ X Turbo

HIS HD7850 IceQ X Turbo

Así mismo hay que tener en cuenta que la diferencia entre una GTX 560 Ti OC/HD7850 OC con 1 GB de memoria y otra GTX 560 Ti OC/HD 7850 OC de 2 GB de memoria no será muy significativa por lo que posiblemente sea mejor opción elegir la de 2 GB siempre y cuando ambas tarjetas tengan las mismas frecuencias en Core/Shaders/Memoria.

En general la diferencia de precio entre un modelo “normal” y otro con overclock no suele ser muy significativa por lo que es mejor opcion la versión con overclock, sin embargo también habría que ver la diferencia del modelo con overclock respecto al modelo siguiente, por ejemplo:

  • Entre una GTX 560 Ti/HD 7850 “normal” y una GTX 560 Ti/HD 7850 con overclock (GTX 560 OC/HD 7850 OC) es mejor opción una GTX 560 OC/HD 7850 OC ya que ofrece algo más de rendimiento que el modelo “normal”.
  • Entre una GTX 560 OC/HD 7850 OC y una GTX 570/HD 7870  (Algunos modelos rondan los 300 – 350 €) posiblemente sea mejor opción la GTX 570/HD 7870 siempre y cuando la diferencia de precio no sea muy excesiva, ya que la GTX 570/HD 7850 estan un “escalón” por encima en rendimiento respecto a la GTX 560 Ti/HD 7850.

Evidentemente también existen tarjetas de gama alta con overclock de serie, como es el caso de algunas nVidia GeForce GTX570/GTX580 e incluso GTX680 y algunas Ati como las HD7970, HD7950 y HD7870.

Anuncios

Tarjetas gráficas sin ventilador: ¿Son una elección acertada?


Personalmente creo que este tipo de tarjetas gráficas son una buena opción siempre y cuando el usuario busque:

  • Silencio “absoluto” (No tienen ventilador), aunque esto también depende de otros componentes (Ventilador de CPU, Ventilador de Fuente de alimentación, Ventiladores de Caja y Discos duros) que también pueden generar ruido.
  • No sea un usuario gamer que busque el máximo rendimiento con gran resolución y nivel de detalle (Hay que tener en cuenta que también podría hacerse un nVidia SLI o Ati Crossfire con dos tarjetas pasivas idénticas aunque sería más que aconsejable tener una buena refrigeración en de la caja).

Las tarjetas gráficas sin ventilador (También conocidas como tarjetas con refrigeración pasivas) tienen varias ventajas frente a los modelos con ventilador (También conocidas como tarjetas con refrigeración activa), entre ellas:

  1. No generan ruido al no tener un ventilador que refrigere el disipador de la GPU/Memorias.
  2. No es necesario sustuir el disipador/ventilador a largo plazo por avería ya que no tienen.
  3. No se pierde la garantía del producto porque la tarjeta tiene de serie un sistema pasivo

Pero también tienen sus desventajas:

  1. Pueden tener menos prestaciones (Frecuencias de funcionamiento (Mhz) algo más bajas) que los mismos modelos con refrigeración activa.
  2. Suelen tener mayor peso ya que en algunos casos los disipadores son bastante aparatosos.
  3. Aunque los modelos de gama baja (Por ejemplo AMD Radeon HD6450 o la GF 610 que son dos modelos relativamente recientes) ocupan un slot; los modelos de gama media (Ej: AMD Radeon 7750 y GF 450 GTS) generalmente suelen ocupar dos slot (Es lo que se conoce como gráficas de doble slot), aunque esto también suele ocurrir con las tarjetas gráficas de gama media que tienen refrigeración activa.

Los modelos de gama baja actuales (Ej: Ati HD6450 y nVidia GT210 y GT220) suelen tener disipación pasiva sin heat pipes, mientras que los modelos de gama media actuales levan también heat pipes para mejorar el rendimiento del sistema de disipación de calor, un ejemplo son:

  • Asus ENGTS450 DC SL/DI/1GD3 (nVidia GTS 450), especificaciones: 594/1.189/800 Mhz Core/Shaders/Memoria con 1 GB memoria GDDR3 y bus de datos de 128 Bits, este modelo esta “recortado” respecto al modelo de referencia que tiene 783/1.566/1.804 Mhz Core/Shaders/Memoria y cuenta con 1 ó 2 GB de memoria GDDR5 en lugar de ser GDDR3 (Eso explica porque la memoria es más del doble de rápida) , personalmente no creo que sea un modelo muy “aconsejable” ya que su rendimiento será algo inferior al modelo de referencia
Asus ENGTS450 DC SL/DI/1GD3

Asus ENGTS450 DC SL/DI/1GD3

  • Sapphire 7750 Ultimate (Ati HD 7750), especificaciones: 800/800/2.250 Mhz Core/Shaders/Memoria con 1 GB de memoria GDDR5 y bus de datos de 128 Bits este modelo tiene las mismas características que el modelo de referencia de AMD, su consumo estimado es de unos 55w (Curiosamente existio una Sapphire 6670 Ultimate con 1 GB GDDR5 y un consumo de unos 108w, lo cual hace pensar que podría diseñarse una Ati HD 7770 que tiene un consumo de unos 80w).

Sapphire 7750 Ultimate (AMD/Ati HD7750)

  • Asus HD7750-DCSL-1GD5 (Ati HD7750), especificaciones: 800/800/2.250 Mhz Core/Shaders/Memoria con 1 GB de memoria GDDR5 y bus de datos de 128 Bits este modelo tiene las mismas características que el modelo de referencia de AMD, su consumo estimado es de unos 55w (Curiosamente existio una Sapphire 6670 Ultimate con 1 GB GDDR5 y un consumo de unos 108w, lo cual hace pensar que podría diseñarse una Ati HD 7770 que tiene un consumo de unos 80w).
Asus HD7750-DCSL-1GD5 (Ati HD7750)

AsusHD7750-DCSL-1GD5

Así mismo existen otros modelos pasivos (Sin ventilador) como por ejemplo:

Sin embargo es curioso que hace unos años hubo modelos de gama media/alta como las GF9800GT de Gigabyte (GV-N98TSL-1GI) o Sparkle (SF-PX98GT512D3-HPL Cool-pipe, información de XGCDB) ambas con las mismas prestaciones que el modelo de referencia (600/1.500/900 Mhz y bus de datos de 256 Bits, 128 Shaders y 56 TMU) que destacaban frente a la GF9600GT “pasivas” por tener mayor cantidad de Shaders y TMU (112 vs 64 y 56 vs 32), claro que las GF 9800 GT eran algo más caras, actualmente es difícil encontrar modelos pasivos de potencia equivalente en nVidia (Lo más parecido sería una GTS 450 sin embargo nVidia ya tiene la serie 5 y6 e en el mercado por lo que la equivalencia actual de una GF 9800 GT sería una GeForce GTX 550 Ti o GeForce GTX 640) ya que Ati tiene actualmente la HD 7750 que aproximadamente si sería su equivalencia actual.

Un punto importante a tener en cuenta es el diseño de la tarjeta en cuestión debido al mayor peso que una tarjeta equivalente con disipador activo estos modelos suelen ocupar dos slot, el problema es que:

  • Algunos modelos únicamente tienen un slot como soporte (Aunque físicamente ocupan dos slot), como es el caso de la antigua GF9800GT de Sparkle (SF-PX98GT512D3-HPL Cool-pipe), lo cual los hace poco aconsejables porque solamente disponen de un slot como medio de anclaje a la torre y por tanto el peso esta “peor” repartido.
  • Por el contrario otros modelos aunque ocupan dos slot, como el caso de la Asus GTS450 (ENGTS450 DC SL/DI/1GD3), sin embargo aunque el anclaje es algo mejor (Al ser doble utiliza dos tornillos como medio de fijación) al no tener el disipador “anclado” a uno de los Slot posiblemente haga que el peso se reparta mejor pero si la tarjeta pesa mucho es posible que no sea eficiente.
  • Por último están los modelos que tienen doble slot y el disipador sobresale por uno de los slot como es el caso de algunas Gigabyte GT9800GT (GV-N98TSL-1GI), GT240 (GV-N240SL-1GI) y Ati HD6750 (GV-R675SL-1GI). En este caso el disipador debería de repartir el peso entre los dos slot de forma más eficiente que en los casos anteriores ya que además de ocupar dos slot, el disipador parece formar parte del sistema de anclaje de la tarjeta gráfica.

Además de lo anterior hay que tener en cuenta el sistema de anclaje de la placa base ya que algunas al tenerlo en la parte superior del puerto PCIe no ayudan mucho soportar el peso de la gráfica, en consecuencia esta puede no ajustar correctamente pudiendo dar en algun momento puntual algún error de vídeo al no “detectar” la tarjeta gráfica.

Así mismo hay que tener en cuenta que existen modelos denominados Green o ECO, los cuáles no tienen porque tener una refrigeración pasiva (Suelen tener refrigeración activa), sino que tienen tienen menos consumo (En algunos casos por usar frecuencias más bajas) ofreciendo menos rendimiento que los modelos normales con refrigeración activa.

VGA y DVI desaparecerán en 2015 en favor de HDMI y Display Port


Por lo que parece los fabricantes quieren eliminar las conexiones:

  • VGA (Video Graphics Adapter) o D-Sub15: Es un conector de video analógico capaz de soportar Full HD 1080p (1.920 x 1.080 píxeles), aunque el audio va por separado.
  • DVI (Digital Visual Interface, Interfaz Visual Digital): Es un conector de vídeo digital capaz de soportar hasta 2.560 x 1.600 píxeles (Superior a Full HD 1080p (1.920 x 1.080 píxeles), que por otra parte soporta HDCP (High-Bandwidth Digital Content Protection, Protección de Contenido Digital de Elevado Ancho de Banda) que es un tipo de DRM (Digital Rights Management, Gestión de Derechos Digitales).

Estas conexiones tienen varios defectos:

  • No permiten llevar audio (Aunque DVI si es compatible con HDCP si podría hacerlo
  •  son relativamente grandes pero también tienen la ventaja de que tienen “tornillos” de ajuste para que la conexión de vídeo no se pierda al mover un poco el monitor (Cosa que por ejemplo no tiene ni SCART/Euroconector ni las conexiones digitales como HDMI (High-Definition Multimedia Interface, Interfaz Multimedia de Alta Definición) ni Display Port).

Sustituyendolas por:

  • HDMI (High-Definition Multimedia Interface, Interfaz Multimedia de Alta Definición).
  • Display Port (Esta conexión es “libre”, es decir su uso no implica el pago de royalties (Pago de patentes) como si ocurre con HDMI).

Ambas conexiones son digitales, soportan también Full HD 1080p (1.920 x 1.080 píxeles) y llevan el audio en formato digital; pero también tienen soporte HDCP y DRM (VGA no soporta ni HDCP ni DRM; DVI si puede soportar HDCP y DRM, de hecho existen cables DVI-HDMI, aunque en ambos casos (VGA y DVI) no pueden llevar el audio por otro cable separado).

En esta imagen de una Ati – AMD Radeon HD5450 se puede apreciar:

Hacer click en la imagen para ampliar

  • Un puerto VGA de color azul (Lateral izquierdo).
  • Un puerto DVI de color blanco (Lateral derecho).
  • Un puerto Display Port en el centro (No parece que sea HDMI).

Se puede encontrar más información en:

Tasa de fallos de componentes informáticos en 2011


En la web francesa Hardware.fr publicaron este pasado mes de abril de 2011 unas tablas con las tasas de error de algunas piezas de hardware informático (Así mismo el año pasado publicaron otro artículo similar el 12 de abril de 2010 y otro el 2 de diciembre de 2010), entre las que figuran tablas de:

Errores de componentes informáticos: Condensadores (Capacitores) hinchados


Actualmente muchos componentes informáticos, entre ellos:

  • Placas base (Motherboard o Mainboard).
  • Tarjetas Gráficas (SVGA o VGA).
  • Tarjetas de sonido.
  • Tarjetas de Red.
  • Tarjetas Capturadoras de vídeo.
  • Etc.

Utilizan entre otros componentes electrónicos los condensadores (Capacitores) cuya función es almacenar energía, los más comunes son:

  • Electrolíticos: El material dieléctrico es ácido electrolítico (Con el tiempo suelen hincharse e incluso derramar líquido por lo que es necesario sustituirlos por unos nuevo o bien cambiar la pieza completa).
  • Sólidos: Utilizan una combinación de Polímero orgánico sólido (Solid Organic Polymer), son de mayor calidad que los anteriores, de hecho algunos fabricantes como Asus o Gigabyte lo implementan en sus productos más actuales, en el caso de Asus por ejemplo la vida estimada de una condensador sólido es de unas 5.000 horas a 105º C, (Un electrolítico tiene un tiempo de vida de unas 2.000 horas), sin embargo el tiempo de vida de los condensadores (Al igual que muchos componentes electrónicos varía con la temperatura), según la escala de Asus:
    • 105º C equivalen a unas 5.000 horas (0,57 años) funcionando 24 horas al día.
    • 85º C equivalen a unas 50.000 horas (5,7 años) funcionando 24 horas al día.
    • 75º C equivalen a unas 158.114 horas (18 años) funcionando 24 horas al día.
    • 65 º C equivalen a unas 500.000 horas (57 años) funcionando 24 horas al día.
    • 60º C equivalen a 889.140 horas (101,5 años) funcionando 24 horas al día.

Como se puede apreciar la vida de un condensador (Capacitor) varía en función de la temperatura por esta razón es importante que un equipo informático este bien refrigerado ya que los componentes principales de un ordenador:

  • Procesador (CPU).
  • Placa base (Chipset).
  • Tarjeta gráfica (SVGA).
  • Fuente de alimentación.

Llevan su correspondiente disipador/ventilador, sin embargo la refrigeración de caja puede ayudar a que los componentes anteriores no se sobrecalienten excesivamente ayudando de paso a refrigerar indirectamente otros componentes del equipo como son:

  • Discos duros (Sólo en el caso de ventiladores frontales que estén delante del/de los disco/s duro/s).
  • Componentes electrónicos de algunas piezas del equipo (Mosfet, Condensadores,…).

Normalmente en muchos componentes electrónicos no suele apreciarse un desgaste/fallo externo, sin embargo en los condensadores si es posible ver físicamente si fallan, ya que en muchos casos suelen hincharse e incluso pueden derramar líquido (Información de Bad Caps), en ambos casos nos indica un fallo del/de los condensador/es (En estas dos fotografías pueden apreciarse tres condensadores hinchados, mientras que el resto de condensadores aparentemente están en buen estado).

Vista general de placa base con condensadores hinchados (Pulsar para ampliar)

Detalle condensadores hinchados (Pulsar para ampliar)

Para reparar este problema, existen dos soluciones posibles:

  1. Sustituir todos los condensadores hinchados y/o con líquido derramado por unos nuevos soldándolos, esta opción suele ser poco viable ya que requiere condensadores equivalentes y por otro lado el acabado de soldar “manualmente” no será el mismo que el de fábrica.
  2. Sustituir la pieza por una nueva, aunque en este caso puede llevar aparejado una sustitución indirecta de más piezas, por ejemplo si tenemos un ordenador con: Procesador Pentium III con Socket 370, Placa base Socket 370 con condensadores hinchados, 1 GB SDRAM PC133 y una gráfica AGP, encontrar a día de hoy en 2011 una placa base nueva para Socket 370 es imposible, la única opción viable sería tirar de segunda mano y el material comprado al no ser nuevo y tener un tiempo de uso más o menos parecido podría fallar en un futuro próximo por lo que en muchos casos sería más viable incluso sustituir el equipo por un nuevo, pero esto implicaría probablemente un cambio de:
    • Placa base por tener los condensadores hinchados.
    • Procesador (Al cambiar de placa el procesador no suele ser compatible con la nueva salvo que tenga el mismo Socket y además este soportado por el fabricante de la placa base).
    • Memoria RAM (La RAM actual es DDR2 ó DDR3 (Esta última es más reciente) en lugar de ser DDR400 ó SDRAM PC133).
    • Tarjeta gráfica (Los modelos actuales son PCI Express (PCIe) no AGP).
    • Fuente de alimentación (Si es muy antigua posiblemente no tenga los conectores que se utilizan actualmente).

Hay que tener en cuenta que utilizar una placa base  con condensadores hinchados (Suele ser el componente más habitual que presenta este tipo de problema), puede generar problemas en el uso del equipo entre ellos:

  • Fallos de placa base antes del POST (Power On Self Test, Auto Diagnóstico Al Encender).
  • Fallos en memoria RAM.
  • Reinicios aleatorios y/o constantes.
  • Fallos durante el arranque y/o instalación del Sistema Operativo.
  • Congelamiento del Sistema Operativo aleatorio y/o frecuente.
  • BSOD (Blue Screens of Death) aleatorias y/o frecuentes durante el uso del equipo.
  • BSOD durante actividad del disco duro (IDE/ATA, SATA, RAID, SCSI,…).
  • Temperatura del procesador (CPU) anormalmente alta en Idle (Sin carga).
  • CPU vCore (Voltaje del procesador) y otros Voltajes erráticos y/o fuera de parámetros normales.

¿Qué es un Switch KVM?


Los Switch KVM (Keyboard Video Mouse, Teclado Video Ratón) son dispositivos (Generalmente no configurables, vienen preconfigurados de fábrica) que permiten utilizar varios ordenadores/servidores con un único teclado, ratón y monitor.

Los modelos más básicos admiten 2 equipos, sin embargo existen modelos que pueden controlar muchos más (Algunos KVM profesionales pueden controlar hasta 32 equipos), por otra parte los modelos más avanzados incluso permiten “compartir” el audio y los dispositivos USB (Actuando como “Host”).

Las conexiones habituales de un KVM son:

  • Conector VGA (D-Sub15) para enviar/recibir la señal de vídeo (Tiene una única entrada y varias salidas).
  • Conector PS/2 (MiniDin) de color rosa/violeta para enviar/recibir la señal del teclado (Tiene una única entrada y varias salidas).
  • Conector PS/2 (MiniDin) de color verde para enviar/recibir la señal del ratón (Tiene una única entrada y varias salidas).

Para ello utilizan cables “especiales” que integran los conectores dentro de un único cable VGA con sus correspondientes conectores  PS/2 para Teclado y Ratón:

Sin embargo dado que actualmente los conectores PS/2 (MiniDin) están tendiendo a desaparecer en favor de los puertos USB (Actualmente se usa USB 2.0 (Hasta 480 Mbps, unos 60 MB/Seg), aunque recientemente ha aparecido la norma USB 3.0 que soporta hasta 4,8 Gbps, unos 4.800 Mbps que equivalen a unos 600 MB/Seg) algunos KVM modernos integran 1 par de puertos USB (Uno para el teclado y otro para el ratón).

Los KVM con puertos USB utilizan cables diferentes a los KVM PS/2:

Los KVM tienen una gran ventaja ahorrando costes, ya que no es necesario tener por cada equipo informático:

  • Un monitor (Que es un componente relativamente caro, los más baratos rondan los 100 € actualmente).
  • Un Teclado (Realmente aunque no son caros, si pueden ser un estorbo si tenemos varios teclados en la mesa).
  • Un Ratón (Al igual que en el caso anterior aunque no son caros, su pueden ser un estorbo si tenemos varios ratones en la mesa).

Aunque lógicamente el uso de KVM se “limita” a equipos de poco uso, como por ejemplo:

  • Servicios de Asistencia Técnica (SAT) donde los equipos únicamente están el tiempo que dura la reparación.
  • Centro de proceso de datos  (Datacenter, CPD o Data Center) donde suele haber varios equipos montados dentro de un mismo rack de 19″.
  • Usuarios domésticos que monten un servidor casero cerca del ordenador principal.

Ya que aunque tengamos dos equipos funcionando únicamente los puede utilizar una persona ya que sólo tenemos disponibles un monitor, un teclado y un ratón.

Un punto a tener en cuenta son las posibles incompatibilidadades de los KVM con:

  • Adaptadores PS/2 a USB o viceversa.
  • Teclados y ratones inalámbricos.

Se puede encontrar más información en:

Guía para comprar una televisión plana (LCD o Plasma)


Independientemente del tipo de televisión que elijamos (LCD o Plasma, comentadas en esta entrada: Televisiones planas ¿LCD o Plasma?) hay ciertos factores a tener en cuenta a la hora de elegir una, entre ellos:

La resolución, que puede ser:  HD Ready 720p (1.280×720 píxeles), o Full HD  (1.920×1.080 píxeles), Actualmente Full HD se denomina HD Ready 1080p, como se comenta en esta entrada: HD Ready vs. Full HD (Ahora denominada HD Ready 1080p). La elección de una resolución u otra depende de:

  1. La distancia a la que vamos a ver la televisión (Esta relacionada con la resolución), en Deaparatos, Foro El Septimo Arte y La Dosis Diaria, se puede encontrar algún ejemplo para calcular la distancia y la resolución adeacuada.
  2. El tamaño de la televisión (Diagonal o pulgadas), según comentan en Que Sabes de aunque no existe una regla para calcular la diagonal recomendada en función de la distancia, sin embargo si comentan que FullHD se hace más visible en pantallas de 37″ o más (Aunque también depende de la distancia de visionado).
  3. El contenido que se va a visualizar en la televisión, por ejemplo si vamos a ver películas en formato DVD (720 x 576 pixeles en PAL, 720 x 480 píxeles en NTSC) o contenido audiovisual con resoluciones similares (ej: TDT, Consolas como la PS2/Xbox,…) con una televisión HDReady (1.280 x 720 píxeles) sería suficiente; por el contrario si pensamos reproducir contenido en Alta Definicion como por ejemplo discos Blu Ray/HD-DVD o visualizar contenidos en resoluciones similares (ej: Consolas como Play Station3 (PS3) o Xbox360) seguramente saquemos mayor partido a una televisión FullHD 1080p (1.920 x 1.080 píxeles) porque el contenido HD suele ser 1.080p.

De todas formas es posible que actualmente no tenga mucho sentido comprar una televisión LCD HD Ready 720p (1.280×720 píxeles) ya que actualmente los LCD Full HD 1080p (1.920×1.080 píxeles) han bajado bastante de precio, y una televisión por regla general suele ser una compra a largo plazo, para varios años.

El tipo de panel LCD (En esta entrada: Paneles LCD ¿TN, IPS y VA? hay más información sobre los tipos de paneles), que puede ser:

  • TN (Twisted Nematic) + FILM: Son los paneles más antiguos y asequibles, tienen muy buen tiempo de respuesta, pero su calidad de imagen (presentan bastante desviación cromática, tienen una profundidad de color de 6 Bits, representando 270.000 colores, aunque los 2 bits que faltan para tener una gama de 16,2 millones de colores se consiguen por interpolación) y ángulos de visión en los extremos (laterales o verticales) son bastante malos distorsionando la imagen. Destacan en juegos y la reproducción de peliculas, ya que no tiene Ghosting (Imagen fantasma) debido a su tiempo de respuesta de muy bajo, de unos pocos milisegundos (ms)… Actualmente son los más habituales y también los más asequibles.
  • IPS (In-Plane Switching, Conmutación En Plano): Es una tecnología que apareció en 1.996 de la mano de Hitachi son más caros que los otros paneles (TN y VA), pero a cambio consiguen mayor fidelidad cromática (apenas tienen desviacíon cromática, tienen una profundidad de color de 8 Bits, representando 16,7 millones de colores, aunque existen modelos de hasta 10 bits), buenos ángulos de visión y contraste del color negro, pero tienen un tiempo de respuesta algo peor que los TN y VA, son más caros que los paneles TN y VA, suelen utilizarse para edición fotográfica.
  • VA (Vertical Alignment,  Alineación Vertical): Fue desarrollada en 1.998 por Fujitsu como una opción intermedia entre los paneles TN y los IPS. Los paneles VA tienen una leve desviación cromática (tienen una profundidad de color de 8 Bits, representano 16,7 millones de colores), un tiempo de respuesta relativamente bajo (más cercano a los TN), un contraste alto (similar a los TN), aunque son más caros que los TN pero más asequibles que los IPS, suelen utilizarse en edición fotográfica, aunque los IPS para esta tarea son mejor opción.

El tiempo de respuesta: A menor tiempo de respuesta menor posibilidad de Ghosting (Imagen Fantasma o “Estelas”), se mide en milisegundos (ms). Los monitores actuales suelen estar entre 2 y 5 ms, aunque hay que tener en cuenta que existen diferentes tiempos de respuesta:

  • ISO ( White to Black, De Blanco a Negro): Suele tardarse algo más de tiempo y debería ser el “estándar”.
  • GtG (Grey to Grey, De Gris a Gris): Suelen usarlos muchos fabricantes porque es más “rápido” que el ISO (Un LCD tarda más en pasar el color de los píxel de Blanco a Negro, que de Gris a Gris).

Actualmente es raro que se de el efecto de Ghosting (Imagen Fantasma o “Estelas”), aunque cuando aparecieron los primeros LCD/TFT si que se podía apreciar en algunos modelos.

Contraste: A mayor contraste mayor calidad de imagen entre los colores/tonos blanco y negro, aunque actualmente muchos modelos llevan contraste dinámico que no es un constraste real, siendo el contraste real muy inferior normalmente al dinámico.

Brillo, Luminancia o Luminosidad (cd/m2): Se mide en candelas por metro cuadrado, a mayor número, mayor luminosidad, por ejemplo un LCD con 300 cd/m2 tiene menos luminosidad que uno con 400 cd/m2.

TDT Integrado (En esta entrada hay más información sobre la tecnología TDT: TDT (Televisión Digital Terrestre) y HDTV (Televisión de Alta Definición) en España), puede un TDT convencional para recibir la señal actual, o bien un TDT compatible con HDTV 1080p, este último es compatible con señal de television Full HD que será la generación siguiente al TDT actual.

Conexiones de Audio y Video (En estas dos entradas (Conexiones de vídeo más frecuentes y Conexiones de audio más frecuentes) hay más información), aunque a modo de resumen se puede decir que las televisiones actuales suelen llevar:

  • Video compuesto (RCA) o S-Video: Actualmente es poco frecuente que una televisión LCD lleve esta conexión ya que es algo antigua, y esta siendo sustituida por el Euroconector/SCSART.
  • Varios Euroconectores/SCART.: Reciben la señal de video y audio en formato analógico por lo que no son compatibles con HD Ready o superior. Actualmente han sido sustituidos por los conectores HDMI (High-Definition Multi-media Interface, Interfaz Multimedia de Alta Definición) que se implementan en muchos DVDs, Consolas (Ej: PS3 o Xbox360) y Reproductores de Alta Definicion (Blu Ray o HD-DVD).
  • Alguna conexion de Video por componentes: Reciben la señal de video (No admite audio) en formato analógico por canales separados, pueden reproducir contenido en alta definición pero al no incluir el sistema de protección HDCP (Dynamic Host Configuration Protocol, Protocolo Configuración Dinámica de Anfitrión) tienen una resolución inferior.
  • Algún conector VGA (D-Sub15) o Entrada PC: Recibe la señal de vídeo (No admite audio) en analógico, aunque es compatible con altas resoluciones como HD Ready o FullHD, no implementa tecnología HDCP por lo que no puede reproducirlas.
  • Varios conectores HDMI (High-Definition Multi-media Interface, Interfaz Multimedia de Alta Definición): Reciben la señal de video y audio en formato digital encriptado (Usan tecnología DHCP) pueden reproducir contenido HD Ready o superior. En principio cuanto mayor sea el número de conectores HDMI mejor ya que de esta forma nos ahorramos tener que utilizar multiplicadores de puertos HDMI ya que este puerto será el futuro estándar en Audio/Video para las televisiones LCD y los dispositivos (DVDs, Blu Ray, Consolas,…) que conectemos a ellas. Hay que tener en cuenta que las tarjetas gráficas de ordenador actuales tienen conexión HDMI o bien utilizan un conector DVI compatible con HDCP.
  • Una conexión Minijack estéreo de 3,5 mm que funciona como entrada de audio para recibir la señal de audio analógico.
  • Dos conexiones RCA (Blanca y Roja) que funciona como entrada de audio para recibir la señal de audio analógico.
  • Entrada para auriculares.
  • Además de las conexiones anteriores algunos modelos pueden tener salidas de audio para llevar el sonido desde la televisión a otro dispositivo (ej: Una cadena musical, Un Home Cinema,…).

Otras tecnologías:

  • Tecnología de procesado de imagen: Es un software (Programa) que aplica los filtros de imagen, cada fabricante suele tener el suyo propio, por ejemplo:
    • Pixel Plus en Philips
    • Bravia Engine en Sony.
    • XD Engine en LG.
    • DNIe en Samsung.
    • TruD en Sharp.

Hay que tener en cuenta que no todos los procesadores de imagen obtienen los mismos resultados, como comentan en este artículo de El Mundo.

  • HDMI CEC (Consumer Electronics Control): Es una tecnología de comunicación bidereccional mediante el conector HDMI, que puede comunicarse los dispositivos  que haya conectados al televisor, utilizando un único mando, cada fabricante utiliza un nombre propio para esta tecnología (En Peliculas FullHD se puede encontrar más información), por ejemplo:
    • Bravia Sync Theatre en Sony.
    • Anynet+ en Samsung.
    • Bravia Link y EZsync en Panasonic.
    • SimpLink en LG.
    • HDMI Control en Pioneer.
  • Reproducción de imágenes a 60, 50 y 24 Hz (o sus multiplos como algunos televisores de 100 ó 120 Hz)
  • Ambilight de Philips: Es un sistema de retroiluminación utilizado por Philips en la línea de sus televisores planos de plasma y LCD; Ambilight permite regular el contraste dentro de la habitación (Información de Wikipedia), en este video de Youtube se puede ver una demostración de esta tecnología de Philips:

Otra opción puede ser comprar un Proyector (Comentados en esta entrada: ¿Proyector o Pantalla plana (Plasma o LCD)?) que tenga la resolución y conexiones que necesitemos.

Se puede encontrar más información sobre Guías y Consejos para comprar un LCD en: